【华安金工】资产增长率在资产定价中的作用——“学海拾珠”系列之一百六十九

admin12个月前研报695
报告摘要

►主要观点

本篇是“学海拾珠”系列第一百六十九篇,文献对HXZFF5F模型中的投资因子进行了实证检验与理论探讨,实证发现其真正的内在因素为债权替代机制,而并非HXZFF5F模型所依据的现值理论和q理论。同时发现存货增长率因子和应收账款增长率因子具有和总资产增长率因子相似的定价效力


·使用企业投资指标构建投资因子 
过在具有投资因子替代结构的模型之间进行夏普比率测试,比较模型f1f2的定价差异。同时,我们还考虑了144种不同测度的投资因子来扩展分析研究表明,基于AG因子的HXZFF5F模型能够较好地解释股票收益,AG因子能够较好地捕捉某些宏观经济动象,进而引入生产率、消费、流动性、不确定性、融资成本、生产网络和市场情绪的冲击的宏观经济指标

·AG、INVT和AREC因子内在机制为债权替代
果表明,引入AG子成分中的库存(INVT)或应收账款(AREC)因子的模型,其性能与原始模型没有显著不同。通过回归,两者一起包含了AG因子的定价信息。引入宏观经济因素和 投资者过度外推程度(DOX)指标,发现股权融资成本冲击对AGINVTAREC投资组合具有定价效力,而对PPE投资组合则不具备。根据Belo et al.(2019),由于INVTARECPPE更容易抵押,比PPE更能代表公司对股权融资成本的敏感性,得出其内在经济机制为债权替代,且当市场处于过度外推状态时,包含AG因子的模型具有更高的定价效率

·文献来源
核心内容摘选自Michael Cooper, Huseyin Gulen, Mihai Ion 2023.10.28发布在Journal of Financial Economics的文章《The use of asset growth in empirical asset pricing models

·风险提示
文献结论基于历史数据与海外文献进行总结;不构成任何投资建议。

01


引言

当前,因子模型有许多进展,如Hou等人(2015)的四因子模型和Fama和French (2015)的五因子模型,提高了股票截面收益的解释力度,同时挖掘出许多异象溢价。相较于Fama和French (1993)三因子模型和Carhart (1997)四因子模型,Fama和French (2015)以及Hou等人(2015)的研究中增加了与企业盈利能力和投资相关的新因子,其使用盈利因子和投资因子来解释股票的预期收益都具有一定的理论依据,五因子模型基于股息贴现模型,四因子模型基于Cochrane (1991)的生产模型。

本文对Hou, Xue, 和Zhang(2015;以下简称HXZ)以及Fama和French(2015;以下简称FF5F)文章中的投资因子进行了实证检验和理论分析。

Hou-Xue-Zhang四因子模型(HXZ):

FF5模型(FF5F):

我们发现,HXZ和FF5F的实证检验中使用的投资因子(I/A,CMA)并不是基于传统的企业投资标准,如资本支出和不动产、厂房和设备(PPE)增长。相反,两篇论文都使用Cooper等人(2008)的“资产增长”(即总资产账面价值的同比变化)作为投资因子算法,并且HXZ和FF5F因子模型的解释力很大程度上依赖于其对投资因子的计量方法,当采用传统的企业投资衡量标准时,模型效力则大大下降。因此,尽管实证效力尚可,其可能缺乏根本的理论合理性,正如从其他许多公司特征因子挖掘出的异常回报一样。

我们认为,在HXZ和FF5F模型中,很难证明资产增长率是衡量企业投资活动的首选指标,主要原因有以下几点,首先,FF5F和HXZ使用资产增长率作为投资的衡量标准,其合理性有待验证,因为这些模型没有给出严格验证,说明哪一组特征最适合于构建投资因子。这主要是因为它们是将预期回报与一组不可观察的特征联系起来的简化模型——账面净值的预期增长和FF5F的预期盈利能力,以及HXZ的最佳投资和预期盈利能力,这些不可观测的特征与数据没有明确的联系。第二,资产增长率不包括资产负债表外的无形资本,如知识资本和管理层资本,鉴于Peters和Taylor (2017)的最新证据,这是一种日益重要的资本类型,应包括在企业的投资活动中。第三,资产增长率混淆了投资和用于投资的融资。例如,如果一家公司用现金为一项PPE投资融资,投资活动确实发生,但资产增长率为零。第四,难以确定总资产某些组成部分的增长,如流动资产的增长在多大程度上可以被归类为投资活动。虽然流动资产的增加可能预示着公司业务的增长,但也可能是公司停滞不前的结果。在缺乏投资机会的情况下,现金余额会增加,如果公司不能以同样的速度销售其产品,存货会增加;如果公司不能收回提供给客户的商业信用,应收账款会增加,这些都导致了资产增长率的上升,但并不是投资活动所致。

出于对资产增长率(AG)指标的关注,我们进行了因子测试,在HXZ和FF5模型在使用其他常用投资测度代替AG因子。我们首先使用PPE的百分比增长、资本支出(CAPX)除以滞后总资产,以及更完整的投资指标(如Peters和Taylor (2017)提出的指标,包括表外无形资产投资)来构建投资因子。将新的投资因子表现与HXZ和FF5F模型表现进行比较。结果表明,如果使用新的指标替代AG指标,HXZ和FF5F模型性能会显著下降。这一发现可以推广到更广泛的投资指标,进而,在模型挖掘中,我们构建了144种不同类型资产(如库存、PPE、商誉、R&D、SGA)的不同投资因子,我们发现几乎所有模型表现都低于引入AG因子的HXZ 和FF5F模型。无论是传统测量还是更广泛的测量都不够显著,这更加佐证了我们的猜想,即AG因子和经济意义上的投资的关联度不大,因此使用标准q理论作为投资因素的动机可能是错误的

为了更深入地了解可能推动AG因素定价能力的因素,我们从资产负债表的两侧将总资产的增长分解为其主要子成分,并衡量当我们用基于其中一个子成分的因素取代AG因素时,HXZ和FF5F模型的表现如何/是否发生变化。在资产负债表的左侧,我们根据现金、存货、应收账款、不动产、厂房和设备(PPE)、无形资产和其他资产(即总资产减去前五类)的变化率来构建新的投资因子。在资产负债表右侧,我们使用流动经营负债、非流动经营负债、长期负债、普通股和留存收益的变化来构建因子。这为我们提供了HXZ和FF5F模型的11个不同的替代版本,每个版本对应AG的一个子成分。结果发现,两侧的子成分在HXZ和FF5F中的表现较为一致。首先,使用传统测度因子的模型表现远不如使用AG因子的模型表现。第二,使用存货增长(INVT)和应收账款增长(AREC)的模型与使用AG因子的模型表现没有显著差异。进而,我们使用直接回归来表明INVT和AREC因子一起包含了AG因子对HXZ和FF5F模型贡献的大部分定价信息。此外,AG、INVT和AREC因子没有被AG的任何其他子组成部分所涵盖。这些发现表明,AG因子的解释力主要来自应收账款和存货动态中包含的信息,而不是PPE和无形投资

尽管HXZ和FF5F模型表现对投资因子的构建方式很敏感,但它们在描述股票收益的横截面方面表现良好。这意味着其构建的AG因子可能捕捉到了截面收益变动的一个共同来源,根据上述实证结果,除INVT和AREC因子外,其他投资指标没有捕捉到该来源。为了探索这种协同作用的来源,我们使用了一组具有代表性的宏观经济变量,这些变量已被证明会在股票回报中进行风险分散,我们使用标准的GMM测试来检验它们是否有助于根据AG、INVT、AREC和PPE增长(超出市场因素)对投资组合进行定价。结果发现,融资相关的冲击(如对投资者情绪、股票发行成本和金融中介资产负债表的总体冲击)有助于对AG、INVT和AREC投资组合进行定价,但对于PPE投资组合没有显著的定价效率。其中,Baker和Wurgler (2006)的股票市场情绪因子(BW)是唯一对AG、INVT和AREC投资组合都具有显著效率的定价因子。从中我们认为,AG、INVT和AREC因子的优异表现可能与其捕捉总体融资冲击的能力有关(如Belo et al.,2019;Adrien et al.,2014;He et al., 2017),尤其是那些受股市情绪变化驱动的因素。为探究BW因子相对于其他综合因子是否具有独立的定价信息,我们使用三因子SDF重复GMM测试,构建包括市场因子、BW因子和先前测试中使用的剩余因子之一的线性函数。我们发现,几乎对于所有的SDF模型,当对AG、INVT和AREC投资组合定价时,BW因子仍然具有显著的SDF影响,但在对PPE投资组合定价时没有。有趣的是,当对AG、INVT和AREC的投资组合进行定价时,将BW因子加入SDF中时,几乎所有其他宏观因素都变得不再显著,而当对PPE投资组合进行定价时,情况则正好相反,其中TFP、CAY、流动性和基于投资的技术冲击因子具有较高的显著性。

我们认为,我们的实证结果与Belo等人(2019)提出的债权替代机制相一致。作者指出,投资较多的公司(以资本化支出CAPX衡量)应该更少受到股票发行成本变化的影响,因其比低投资公司更少受到抵押约束,这应能使这些公司在经济不景气时通过用股权替代债务融资,更好地对冲总体股权融资冲击。我们认为,这种机制应该适用于公司的所有其他可抵押资产,特别是,由于短期资产比长期资产更容易抵押(Berger et al. ,1996),对INVT和AREC的排序可能会对公司受到抵押约束的程度提供更准确的排序。因此,在投资者情绪(BW)大幅下降的时期,具有高AG、INVT和AREC的公司比具有低AG、INVT和AREC的公司更有能力用股权替代债务融资。我们发现,当我们使用PPE增长率时,这种可替代性不是很强。

重要的是,这种债权替代渠道可以将AG因子与股权融资成本联系起来,而无论其驱动因素是什么。正如Belo等人(2019)认为,股权融资成本可能受到各种形式的代理摩擦和投资者风险厌恶的冲击,但也可能受到系统性行为偏差的冲击。为研究这种可能性,我们使用Cassella和Gulen (2018)的投资者过度外推程度(DOX)指标,发现HXZ和FF5F模型仅在DOX指标较高的时期优于基于更传统投资因子测度模型。事实上,在低于中位数的过度提取的子样本中,HXZ模型并不比Carhart (1997)的四因素模型表现得好,FF5F模型也不比Fama和French (1993)的模型或Carhart (1997)的模型表现得好。

我们承认,在缺乏结构模型的情况下,很难明确地得出给定因子模型捕捉了风险或错误定价的结论。出于这个原因,我们并不认为哪种股权融资成本的特定驱动因素更有可能解释我们的结果。除了我们的主要发现,即AG因子似乎捕捉到了对股票发行成本的冲击,我们研究得出的更普遍的结论是,将简化形式的理论模型(如Hou等人,2015和Fama and French,2015)与实际数据联系起来说服力不够,特别是当这些模型中包括无法直接观察到的变量时。考虑到将这些模型的自由度较大,不同的做法可能导致性能的显著差异,人们不得不质疑这些简化形式的模型是否真正“受理论约束”


02


采用企业投资的替代指标构建因子

HXZ和FF5F模型通过大量证据表明了其在解释各种测试资产的异常回报和平均回报方面明显优于现有的基准模型(如Fama和French (1993)和Carhart (1997))。为进行进一步说明,我们首先使用文献中较为常见的企业投资指标。企业投资文献浩如烟海,很难一一列举。考虑到这一点,我们对文献的广泛回顾表明,企业投资的实证研究(包括q理论的测试)通常集中在实物资本投资上,使用现金流量表中的资本支出(CAPX)或不动产、厂房和设备(PPE)的增长来衡量。因此,我们使用CAPX和PPE的变化,两者都除以滞后的PPE,作为我们的衡量指标。在最近的一项研究中, Peters和Taylor (2017)指出,新古典投资理论问世时,企业主要拥有实物资本,而当前无形资产已成为越来越重要的生产要素,应纳入企业投资的衡量标准。他们将无形资产总额计为资产负债表上的无形资产(商誉)加上资产负债表外的无形资产之和。后者被计算为资本化的研发资本(R&D)加上资本化的组织资本(SG&A的30%)。公司的总资产被计为有形资产(总PPE)加上无形资产的总和。在我们下面的分析中,我们使用总资产TOTK、有形资产PHK和无形资产INTK的这些指标的年度变化作为投资因子的额外指标(全部由滞后总资本标准化),我们将这些指标分别记为TOTK, PHK, 和INTK

2.1 使用夏普比率来比较模型性能

我们使用BarillasShanken (2017)以及Barillas等人(2020)的框架,在具有投资因子替代结构的模型之间进行比较测试。BarillasShanken (2017)表明,比较两个因子模型(带交易因子)在一组测试资产X定价中的表现,相当于比较每个模型中的因子(以下表示为)的最大夏普比率。事实上,模型在多大程度上未能对资产X和进行定价,取决于通过将X纳入投资框架后,其最大夏普比率能提高到什么程度:类似地,模型下的错误定价的程度是由给出,因此,模型之间的定价差异由给出,我们的唯一目的是比较两个模型。

在表2中,我们展示了列标中指定的模型减去行中指定的模型之间的最大夏普比率的差异(如基于CAPX的SR-基于AG的HXZ模型的SR)。面板A采用HXZ模型,面板B采用FF5F模型。面板A中第一行的所有估计值均为负值,表明在对任何一组测试资产进行定价时,所有基于替代投资指标(即CAPX、PPE、TOTK、PHK、INTK)的HXZ模型的表现都明显差于原始的基于AG的HXZ模型。面板A中的第二行和第三行表明基于5个替代投资因子的模型表现优于不包含任何投资因子的HXZ模型和FF3F模型。

同样,面板B的第一行表明,用基于五个备选投资因子替换FF5F模型中的AG因子,会导致模型的表现显著低于FF5F。但面板B的第二行和第三行中统计上不显著的估计表明,FF5F模型中的CAPX、PPE、TOTK、PHK和INTK投资因子实际上可以被市场、规模、BM和盈利能力因子(第二行结果)甚至FF3F因子(第三行结果)超越。因此,当使用更传统测度方法构建时,投资因子在FF5F模型中是多余的。

在附录的表E6中,我们展示了这些替代投资因子模型在解释常见异常投资组合和双变量测试资产方面的表现。结果显示了与表2中相同的定性模式。基于替代投资因子的模型表现明显差于原始的基于AG的模型。此外,在后文中,我们展示了AG并不是比CAPX更好的刻画企业未来投资、盈利能力或账面权益增长的预测指标。这就对AG因子的优异表现(相对于更传统的投资指标)可以归因于它是现值框架和托宾Q模型(即预期投资、预期盈利能力和预期账面权益增长)中其他关键变量的更好代表这一观点提出了质疑

2.2 数据

为了验证我们的分析的主要发现不是由我们对替代投资因子的特定选择所驱动的,我们通过考虑144种不同测度的投资因子来扩展上一节中的分析。为了构建我们的投资指标,我们从三种不同的实物资本投资指标开始(CAPXPPE总值变化和CAPX中扣除 PPE的出售额)然后,我们考虑公司可以进行的其他几项投资:库存变化、商誉变化、资本化知识资本变化和资本化组织资本变化(后三种的计算方法与PetersTaylor (2017)相同)。对于实物资本投资的三种选择中的每一种,我们都添加了另外四种投资类型的每一种可能的组合。这就产生了3×2×2×2 = 48种不同的投资方法。最后,我们使用三个不同的滞后标准化变量PetersTaylor (2017)测量的总资产、PPE总值和总资本,进而一共有48 × 3 = 144个投资因子测度。

接着按照第2.1节中相同的方法,并且我们分析如果AG因子可被这144种不同投资因子所替代,HXZ和FF5F模型的性能如何变化。为此我们遵循Barillas和Shanken (2017)的方法,关注一个关键性能指标:通过每个模型中的因子获得的最大平方夏普比率

图3显示了来自HXZ模型(上图)和FF5F型模型(下图)的这144个夏普比率的直方图。标有“AG”的垂直线显示HXZ模型(顶部面板)和FF5F模型(底部面板)的最大夏普比率平方。作为一个参考点,标有“d.PPE/l.PPE”的线条显示了如果我们使用PPE的百分比变化作为我们的投资指标,而不是AG因子所能获得的最大夏普比率的平方。图3中的结果表明,基于AG的HXZ和FF5F模型在性能方面是极端异常的:HXZ模型的性能优于我们144个备选投资模型中的每一个,而FF5F模式的性能优于144个模型中除5个模型外的所有模型(在未报告的结果中,我们验证了这5个模型与AG之间的性能差异在统计上并不显著)。


03


利用资产增长率的子成分构建因子

目前为止,实证结果表明,投资因子并不由传统的投资指标所驱动。我们需要更好地理解是什么驱动了AG因子的解释力,进而探究如果我们使用AG因子的子成分而不是AG本身来构建因子的效果如何。我们将公司总资产的增长分解为资产负债表左侧和右侧项目的变化。在左侧,我们使用现金(CASH)、存货(INVT)、应收账款(AREC)、不动产、厂场和设备(PPE)、无形资产(INTAN)和其他资产(OTHER,即总资产减去上述类别)的变化。在右侧,我们使用流动经营负债(COLIAB)、非流动经营负债(NCOLIAB)、债务(DBT)、普通股权益(EQ)和留存收益(RE)的变化。所有11个增长指标都通过滞后总资产进行标准化。因此,资产负债表两边的所有子资产的总和等于公司总资产的增长百分比。

在表4中,我们基于Barillas和Shanken (2017)以及Barillas等人(2020)详述的最大平方夏普比率测试进行模型比较。类似于表2所示的测试,但不同之处在于我们使用AG的子成分将HXZ和FF5F模型与其对应模型进行比较。在面板A1和B1中,根据资产负债表左侧的AG分解为其子成分来创建因子,比较HXZ模型,在面板A2和B2中,根据资产负债表右侧的AG分解为其子成分来创建因子,比较FF5F模型。表中的每个估计值代表最大平方夏普比率的差值,该差值可以使用列标题中模型的因子减去行标题中模型的类似数字来获得。例如,面板A1的现金栏中的0.068估计值告诉我们,使用现金增长衡量投资因子的模型获得的最大平方夏普比率比原始HXZ模型低0.068。

面板 A1显示,如果我们使用AG子成分中的库存(INVT)或应收账款(AREC)建立HXZ模型,不管我们使用的测试资产是什么,其性能与原始HXZ模型没有显著不同。相比之下,当HXZ模型是使用对长期资产(无论是有形资产(PPE)还是无形资产(INTAN ))的投资来构建因子时,其表现明显差于原始HXZ模型,同时也差于不引入投资因子的模型。面板A2显示,当我们比较FF5F风格的模型时,能得到几乎完全相同的结论。附录中的表E9显示了所有这些替代模型在解释常见异常投资组合和双变量排序测试资产时的表现,也得到了几乎同样的结论,基于库存和应收账款的模型的性能接近原始HXZ和FF5F模型,而基于所有其他左侧子成分的模型的性能要差得多。

比较基于AG右侧子成分的模型的性能,会得出HXZ和FF5F模型之间不太统一的结论,这也是为什么我们将主要关注左侧分解的主要原因。面板B1中的第一行显示,当我们使用留存收益(RE)为投资因子构建HXZ模型时,模型的表现并不比HXZ模型差很多,而其他四个子成分测度则没有这个特征。面板B2显示,当我们使用债务增长率为投资因子构建FF5F模型时,不会损失原始模型的性能,但是当使用其他四个子成分中的任何一个时,性能会显著恶化。

3.1 存货和应收账款因子解释了资产增长因子

4中的结果表明,如果HXZFF5F模型的“投资因子是使用库存增长(INVT)或应收账款增长(AREC)而不是AG构建的,HXZFF5F模型的性能不会显著下降。在本节中,我们表明AG因子对HXZFF5F模型的定价信息实际上是由INVTAREC因子(而不是AG的其他子成分)决定的

我们从运行以下形式的回归开始:

其中,分别代表AGINVTAREC因子的收益,项包含HXZ模型(如表5的面板A所示)FF5F模型(如表5的面板B所示)中所有剩余因子的收益。由于我们的关注点是HXZFF5F模型中AG因素的定价能力,而不是其单独的表现,所以控制这些剩余因子很重要。因此,也有必要检验AG因子与这些模型中其他现有因子的相关性。

从式(1)获得的结果呈现在表5的第一列中。两个面板中的系数在统计上均不显著,这表明AG因子对HXZ和FF5F模型的定价信息是由INVT因子和AREC因子的共同存在所捕获。在附录的表E10中,我们运行了类似的回归来测试AG因子是否被其任何一个单独的子成分涵盖,而情况并非如此。因此,INVT和AREC因子都需要才能涵盖AG因子。在表5的其余列中,我们使用AG的不同子成分(来自资产负债表的左侧)作为式(1)中的因变量。系数仍然不重要,这表明INVT和AREC因子(一起使用)也包含所有其他子成分因子的定价信息。

我们接下来测试INVT和AREC因子是否被AG的任何子成分涵盖。具体来说,在表6中,我们运行以下形式的回归:

其中表格中的每一栏使用资产负债表左侧不同的AG子成分(即CASH、AREC、PPE、INTAN或OTHER)作为主要解释变量。为了控制由于拆分AG的各个子组成部分而丢失一些信息的可能性,我们还使用除存货以外的所有资产的增长构建了一个因子(我们称之为AG-INVT因子)。同样,面板A报告了HXZ模型结果,面板B报告了FF5F模型结果,项包含HXZ模型(面板A)或FF5F因子(面板B)中的所有剩余因子。

表6中的结果表明,系数在所有模型中都具有统计显著性,这表明INVT因子没有被AG的任何其他单独的子成分所涵盖,或者没有被所有子成分的总和纳入AG-INVT因子(表中最后一列)的结论。在表7中,我们使用AREC因子的回报作为式(2)中的因变量,并进行类似于表6中的测试。我们发现,无论是单独引入还是作为总和引入(即最后一列中的AG-INVT因子),AREC也不能被AG的任何其他子成分涵盖

我们认为,综合来看,本节的结果显著表明,INVT和AREC因子一起包含了AG因子对HXZ和FF5F模型贡献的大部分定价信息。不仅INVT和AREC因子包含了AG因子的回报,而且它们本身不能被AG的任何其他子成分所涵盖(无论是单独还是作为组合引入)。


04


资产增长率和宏观经济因子

基于AG因子的HXZ和FF5F模型在描述股票收益横截面方面表现如此之好,这一事实表明AG因子能够较好地捕捉某些宏观经济动向,根据前三节的实证结果,AG因子没有被其他投资指标(如PPE增长)捕捉到,但能够被基于库存增长(INVT)和应收账款增长(AREC)的因子捕捉到。因此,要更深入地理解导致AG因子优异表现的内在经济机制,一种方法是观察哪些宏观经济冲击是基于AG、INVT、和AREC因子的投资组合回报的重要驱动因素,而非PPE因子

       以往研究中有大量可以产生横截面风险分散的宏观经济冲击,如下所示的变量可能会促使AG因子捕捉宏观经济动向。具体来说,我们使用对生产率、消费、流动性、不确定性、融资成本、生产网络和市场情绪的冲击的宏观经济指标:

1.TFP是对利用率调整后的全要素生产率冲击的衡量因子(Fernald (2012))。

2.IST是投资专用技术因子(Papanikolaou (2011))。

3.RD是创新因子(Elsaify (2017))。

4.CAY是消费-财富比率因子(Lettau和Ludvigson (2001))。

5.LIQ是总流动性因子(Pastor和Stambaugh (2003))。

6.UNC是宏观经济不确定性因子(Jurado et al.(2015))。

7.ICS是总体股权融资冲击的衡量因子(Belo et al.(2019))。

8.LEV是金融中介杠杆因子(Adrien et al.(2014))。

9.CRAT是金融中介资本比率因子(He et al.(2017))。

10.RS是生产网络风险因子(Grigoris et al.(2023))。

11.BW是股票市场情绪指标因子(Baker and Wurgler (2006))。

12.HYS是代表信贷市场情绪的“高收益份额指标因子(Greenwood and Hanson (2013))。

其中,ICS因子为年度数据,TFP、CAY、LEV和HYS因子为季度数据,其余因子为月度数据。CAY、UNC、BW和HYS因子使用AR(1)残差来衡量,剩下的因素要么是收益差(RD,IST和RS),要么是作为新息(TFP,LIQ,ICS,LEV,CRAT)。

对于上表中的每个宏观经济因素(MACRO),我们假设一个随机贴现因子(M),其形式为:

其中,MKT是价值加权市场投资组合的(去均值化)超额回报,时间段t与MACRO因子具有相同的频率(即,对于年度和季度因子,代表期间市场投资组合的累积回报,因子同样去均值化。需要注意的是,因子载荷不是MKTMACRO因子的风险溢价,而是考虑了因子之间的相关性后的溢价转换。正如Cochrane (2005)所述,每个因子的SDF负荷衡量了包含在SDF中其他因素尚未捕获的信息(与测试资产定价相关)

我们使用四组不同的投资组合作为测试资产,根据盈利能力和AG、INVT、AREC或PPE增长进行分类。例如,正如Kogan and Papanikolaou (2012)所述,只有在我们控制盈利能力因子时,基于投资的模型才能预测投资和贴现率之间的负相关关系。我们使用FF5F中的盈利因子来衡量盈利能力(以匹配AG变量及其子成分的年度频率),同时使用纽约证券交易所的截尾值来形成投资组合(以与我们论文其余部分中用于构建因子和异象的方法保持一致)。

在表8中,我们通过第一阶段广义矩估计了因子载荷,使用单位矩阵来衡量力矩限制。我们使用标准的矩条件,其中代表测试资产i的超额收益。表中的每一列对应于不同的模型,每个面板使用不同的测试资产。具体来说,每个面板按AG(面板A)、INVT(面板B)、AREC(面板C)或PPE增长(面板D)对25个投资组合进行定价,这些投资组合由5乘5的双变量盈利性分类构成。作为拟合的衡量标准,我们报告了每个模型隐含的平方(定价)误差(SSQE)的总和,以及平均绝对定价误差(mape)。作为参考,在每个面板的第一列,我们还报告了使用CAPM的结果(即式(3)中去掉MACRO因子)。

表8中发现,几乎所有的宏观因素都在基于AG的排序组合中具有显著的截面定价效力(面板A),唯一的例外是流动性(LIQ)和信贷市场情绪(HYS)因子。这至少有助于部分为什么基于AG因子的HXZ和FF5F模型能够较好地为股票截面收益定价。另外,我们更需关注面板A、B和C中的结果如何相似,以及它们与面板D中的结果如何不同,从这个角度来看,从表8可以得出两个结论,首先,虽然技术冲击因子(TFP、IST和RD)在AG、INVT和AREC的横截面上显著(除了面板B中的TFP因子),但它们在PPE组合的横截面上也是显著的。这表明,基于PPE的因子模型表现不佳不太可能是因为其捕捉宏观技术冲击(即托宾Q理论或基于生产模型中采用的冲击类型)的能力较低。其次,AG、INVT和AREC投资组合似乎比PPE投资组合更好地捕捉到了融资相关的宏观冲击(ICS、LEV、CRAT、BW)。

CAY、UNC和RS因子在AG投资组合的横截面中也同样显著,然而,我们不认为这是基于AG因子的模型定价效率显著的原因。首先,RS因子在PPE组合的横截面中也很重要。其次,正如3.1节中所示,INVT和AREC因子(一起)包含了HXZ和FF5F模型中AG因子的基于所有定价新息,然而,CAY和UNC因子在面板B和面板C中均不显著。

总体而言,表8中的结果表明,AG、INVT和AREC因子表现优于传统投资因子可能与其捕捉总体融资冲击的能力有关,而不是全要素生产率/技术冲击。同时,唯一能在AG、INVT和AREC资产定价而非PPE资产定价起作用的因素是股票市场情绪(BW)。因此,我们更进一步,测试这一因素是否捕捉到独立的定价信息,而这些信息在我们使用的其他宏观经济因素中尚未包含。为此,我们构建了以下形式的三因素SDF:

其中是我们此前测试中使用的因子。同样使用力矩限制重复表8中的试验。

结果见表9。从该表中得到的关键信息是,在几乎所有模型中,当对AG、INVT和AREC投资组合进行定价时(面板A、B、C ), BW因子载荷仍然很重要,而当对PPE投资组合进行定价时(面板D ), BW系数负荷不重要。一个例外是在面板A和C中,SDF中的因子是Belo等人(2019)的股权发行成本(ICS)因子,这一结果可能并不令人惊讶,因为正如Belo等人(2019)指出的那样,ICS因子应涵盖股票发行成本的所有驱动因子,包括股票市场情绪。表9还显示,BW因子排除了AG、INVT和AREC投资组合中几乎所有其他因子的定价能力(唯一的例外是面板A中的ICS因子、面板B中的IST、RD和RS因子,以及面板C中的IST和RS因子)。对我们的研究很重要的是,这不是PPE投资组合的情况(面板D ),其中TFP、IST、RD、CAY、LIQ和RS因素仍然很重要


05


内在机制探究
上文实证的主要结果是,AGINVTAREC因子的优异表现似乎是由总融资冲击驱动的,其理论上可以通过Belo et al.(2019)Bolton et al. (2013)来解释,即企业必须对随机融资条件做出反应,而不仅仅是生产率冲击。为了说明为什么以引入PPE因子的模型表现不如引入AGINVTAREC因子的模型表现,我们将根据现存文献中的说明,对我们的主要发现进行一些可能的解释。

我们认为,在我们的研究中,短期资产(INVT和AREC)和长期资产(PPE)之间的一个关键区别是它们作为债务融资抵押品的不同价值。基于Berger et al. (1996),我们假设一个公司的AREC和INVT数据比PPE数据能够提供更多关于该公司进入债务市场能力的信息。作者使用了1984-1993年制造业公司样本的非持续经营的收益数据,表明一美元固定资产的回收价值低于一美元应收账款(AREC)或存货(INVT)的回收价值。Campello和Hackbarth (2012)利用这一思想构建了一个企业层面的资产有形性指数,作为企业抵押担保品能力的代理。与我们的假设一致,Campello和Hackbarth (2012)构建的可抵押性代理对AREC和INVT的变化比对PPE的变化更为敏感。

Ai et al. (2020) 认为,资产可抵押性应作为负的溢价,并揭示了与这一想法相一致的经验证据。他们指出,许多以融资摩擦为特征的宏观经济模型预测,金融约束在衰退中更具约束力,因此可能加剧经济衰退。通过其放松金融约束的能力,可抵押资产应能够在经济衰退时对冲金融约束风险。因此,拥有更多可抵押资产的公司应该较少受到总体融资冲击的影响。如果,与Berger et al. (1996)以及Campello和Hackbarth (2012)一致,相比PPE,AREC和INVT提供了公司的可抵押资本更好的代理,那么Ai et al. (2020)的结果可以解释为什么我们发现融资冲击与AREC和INVT之间有更强的联系。在Ai et al. (2020)的框架中,AREC和INVT(以及AG)因子都是可抵押性溢价的更好的代理

然而,由于Ai et al. (2020)的研究没有特别模拟股权融资成本的作用,它不能明确说明股票市场情绪因素在我们的实证中发挥的核心作用。我们认为,Belo et al. (2019)提出的经济机制可能会弥补这一缺失。作者提出(并找到了与之相一致的证据)这样一个观点,即高投资公司应对股权融资成本具有较低的敏感性,因为它们比低投资公司受到的抵押约束更少。这意味着,当面临股权融资成本上升时,它们应该能够更好地用股权替代债务融资。因此,拥有更多可抵押资产的公司应该较少暴露于股权融资成本的冲击。

虽然Belo et al.(2019)在他们的研究中使用了长期资产投资(CAPX ),但我们认为其应该适用于公司的所有其他可抵押资产。此外,根据Berger et al.(1996)的研究,INVT和AREC比PPE更容易抵押,因此对INVT和AREC(以及AG)的排序可以简单地提供更准确的关于公司抵押约束程度的排序。换句话说,以PPE为基础的因素表现不佳可能是因为它不能较好地作为公司股权替代债务的能力代理变量。

我们在表10中探索了这一渠道,其中我们报告了AG(面板A)、INVT(面板B)、AREC(面板C)和PPE增长(面板D)前五分之一和后五分之一公司的平均债务和股票发行水平。遵循Belo et al.(2019)的方法,我们通过将平均发行的每个五分之一水平时间序列与实际GDP年增长正交化来控制商业周期冲击对发行活动的影响。然后我们报告了这些正交化序列的平均值,分别针对情绪冲击高和低的时期进行计算。情绪冲击高(低)的时期是相对于我们的GMM测试中使用的BW因子(一年中的平均值)落在顶部(底部)十分位数的年份。所有报告的数字都是百分数。

在所有面板中,表10中的结果与Belo et al.(2019)的债权替代机制一致。也即,当面临更高的股权融资成本(低市场情绪)时,两个五分位数(Q1和Q5)的公司发行更少的股权,但只有前五分位数(Q5)的公司能够用更高的债务发行来替代。底层五分之一国家(Q1)企业的债务发行几乎保持不变,非常接近于零

对于我们的研究来说,重要的是,当我们使用AG、INVT和AREC排序(面板A、B、C)时,这种可替代性似乎比使用PPE排序(面板D)时更强,这一结果似乎主要是由前五分位数Q5(第二和第四列)中企业的行为所驱动的。具体而言,在市场情绪低迷时期,AG(Q5)、INVT(Q5)和AREC(Q5)的公司似乎比PPE(Q5)的公司减少了更多的股权发行(AG、INVT和AREC分别减少了50%、43%和47%,而PPE减少了40%),同时增加了更多的债务发行(AG、INVT和AREC分别增加了15%、32%和41%,而PPE仅增加了6%)。这与我们的假设相一致,即AG、INVT和AREC在某种程度上可能比PPE能更好代理当面临股权融资成本增加时,采用债权替代机制的能力。

重要的是要认识到,这种债权替代机制的运作独立于导致股权融资成本变化的宏观经济变量。正如Belo et al.(2019)所述,这包括时变信息不对称、代理摩擦、流动性和风险厌恶等因素,但也可能包括各种投资者行为偏差导致的错误定价冲击。

我们的最后一组测试通过使用Cassella和Gulen (2018)的总体“投资者过度外推程度(DOX)指标,并观测基于AG因子的模型性能是否因经济中的过度外推程度而不同。

在表11中,我们测试了HXZ和FF5F相对于传统模型(CAPM、FF3F和C4F)的卓越性能是否根据市场处于高或低过度外推期(即高于或低于中值DOX水平)而变化。我们使用基于最大平方夏普比率的模型比较测试,类似于表2,唯一的区别是此时夏普比率是在高DOX时间(面板A1和B1)和低DOX时间(面板A2和B2)期间分别计算的。面板A1和A2使用HXZ作为基准模型,面板B1和B2使用FF5F作为基准模型。

面板A1显示,当DOX较高时,HXZ模型的表现明显优于CAPM、FF3F和C4F (FF5F的表现与HXZ大致相同)。然而,图A2显示,当DOX较低时,HXZ的表现并不比C4F模型更好,且仅略好于FF3F模型(差异仅在10%的水平上显著)。类似地,在面板B1中,当DOX较高时,我们看到FF5F模型的表现明显优于CAPM、FF3F和C4F模型。然而,B2面板显示,当DOX较低时,FF5F模型的表现并不比FF3F模型或C4F模型好。总的来说,表11中的结果表明,当经济处于过度扩张状态时,包含AG因子的模型具有更高的定价效率

在表12中,我们构建了引入替代投资指标的HXZ和FF5F模型,并比较了它们与原始模型在高和低过度扩张时期的性能。面板A1的第一行中的所有估计都显著为负的事实表明,在高DOX时期,使用任何替代投资因子构建的HXZ模型的表现都显著差于原始的基于AG因子的HXZ模型。面板A2显示,在低DOX时期,情况并非如此:无论我们使用AG来创建投资因子还是任何替代的投资指标,HXZ模型都不会表现得更好。当我们比较FF5F风格的模型时,面板B1和B2发现了相同的模式:基于AG的模型(FF5F)在高DOX时间比所有替代模型(面板B1)表现得好得多,但在低DOX时间(面板B2)却不是这样。这些结果有助于支持之前的发现,即当过度外推程度较高时,基于AG因子的模型的优越性能仅限于样本量的一半。


为解决上述实证结果的局限性,在图表13中,我们使用了第2.2节中描述的所有144种备选投资因子。具体来说,该图显示了在高DOX时间(左图)和低DOX时间(右图)期间,引入144个因子后的模型获得的最大平方夏普比率的直方图。图表13的左上图显示,在高DOX时期,原始HXZ模型(标记为具有垂直“AG线)是一个极端的异常值。右上角的面板显示,在低DOX时期情况并非如此,原始HXZ模型的表现类似于替代投资因子模型。图表13的左下图和右下图显示,此结论对FF5F模型同样适用。当DOX较高(左下图)时,原始FF5F模型是迄今为止最好的模型,但是当DOX低(右下图)时,FF5F模型表现一般


06


结论
挖掘能够预测未来股票回报的公司特征因子是资产定价的关键一环,使用这些特征来构建新的因子模型通常会提高描述截面平均回报的能力。然而,如果不了解这种定价能力提高的结构机制,就很难对如何使用新模型解决问题,也很难声称它们为资产定价提供了新的见解。这促使我们研究HXZFF5F模型的解释力的驱动因素

我们将关注点放在投资因子上,投资因子在HXZ和FF5F的原始论文中使用总资产增长率来构建。我们首先证明,如果使用传统投资衡量标准来构建这一资产增长因子,模型表现会显著下降。此外,将AG指标分解为主要的子成分并使用这些子成分构建因子表明:当投资因子是由财产、厂房和设备(PPE)的增长率来构建,而不是用库存(INVT)和应收账款(AREC)的增长率构建时,模型不显著。当我们完全忽略有关长期资产投资的信息时,AG因子的表现不会下降,这一发现对其解释力主要归因于预期回报和投资活动之间的结构性联系的观点提出了质疑

这些发现促使我们研究资产增长和预期回报之间是否存在其他的结构联系。我们使用一套广泛的宏观经济因素对按照AG、INVT、AREC和PPE增长率排序的投资组合进行定价,并发现股权融资成本冲击有助于对AG、INVT和AREC投资组合进行定价,但对PPE投资组合没有帮助。特别是,在为AG、INVT和AREC投资组合定价时,股票市场情绪因素似乎排除了几乎所有因素的定价能力,但未排除PPE投资组合。我们认为,这一发现与Belo et al.(2019)的发现一致,他们提出,高投资公司较少受到股权融资成本变动的影响,因为他们比低投资公司更少受到抵押约束,因此当股权融资成本变得更高时,可以更好地用股权替代债务融资。由于INVT和AREC比PPE更容易抵押,它们(以及AG)可能比PPE更能代表公司对股权融资成本的敏感性。为了支持这一假设,我们发现,与按照PPE排序相比,按照AG、INVT和AREC的排序提供了更显著的差异,即企业在面临低股票市场情绪时以股票替代债务融资的程度

这种将AG、INVTyixia和AREC因子与股权融资成本联系起来的债权替代渠道,对于推动这些融资成本的潜在原因并不敏感。同时,我们认识到这些潜在的原因很可能包括系统性的行为偏差,进而我们通过使用DOX过度外推程度,提出了一些可能性依据,并表明资产增长因子的优异表现仅限于过度外推水平高于中值的一半样本量。事实上,在低于中位数的过度外推样本中,HXZ的表现并不比Carhart (1997)模型好多少,FF5F的表现也不比Fama和French (1993)模型好多少。

然而,我们承认,在缺乏结构模型的情况下,很难断定因子模型是由风险还是错误定价所驱动,就此需要沿着HXZ和FF5F模型进行进一步的研究。更一般地,我们的发现表明,当使用简化模型来解释定价因子所捕捉的经济力量时,应该秉持谨慎的态度。尽管HXZ和FF5F模型所依据的现值理论和q理论模型较为直观,但我们的研究表明,他们提出的投资因子实际上可能捕捉到了超出其解释的现象



文献来源:

核心内容摘选自Michael Cooper, Huseyin Gulen, Mihai Ion 2023.10.28发布在Journal of Financial Economics的文章《The use of asset growth in empirical asset pricing models


风险提示

文献结论基于历史数据与海外文献进行总结;不构成任何投资建议。


重要声明
本文内容节选自华安证券研究所已发布证券研究报告:《资产增长率在资产定价中的作用

——“学海拾珠”系列之一百六十九》(发布时间:20231207),具体分析内容请详见报告。若因对报告的摘编等产生歧义,应以报告发布当日的完整内容为准。分析师:骆昱杉 || 执业证书号:S0010522110001,分析师:严佳炜 || 执业证书号:S0010520070001



往期报告
--基金研究--
34.《权益基金加仓电子、非银等行业,白酒、创新药主题重获青睐——权益基金2023年三季报解析》
33.《买卖之间的心理迷思:处置效应下基金经理的行为模式》
32.《TMT行情降温,权益基金加仓通信、汽车等行业——权益基金2023年二季报解析》
31.《小荷才露尖尖角:黑马基金经理如何挖掘?》
30.《权益仓位再创新高,大幅加仓计算机——权益基金2023年一季报解析》
29.《基民收益启示录:寻找低落差感基金》
28.《寻找基金经理中的“稀缺基因”》
27.《加仓国防军工、交运,投资热点渐趋分散》
26.《FOF弹性与收益增厚:聚焦赛道ETF轮动》
25.《大幅加仓食品饮料,风格向大市值切换——权益基金2022年二季报解析》
24.《市场未出现大规模赎回,电新加仓成首位重仓行业——权益基金2022年一季报解析》
23.《揭秘布局优秀行业主题基金的“必要条件”》
22.《多只重仓股获主动减仓,分散持股趋势延续——权益基金2021年四季报解析》
21.《医药基金深度解析:持仓、业绩、逻辑的演绎与印证》
20.《沪深300 Pro Max——国泰300增强ETF投资价值分析》
19.《持股集中度下降,风格切换正当时——权益基金2021年三季报解析》
18.《基金投资如何选准对标的“锚”:华安分类标签框架介绍》
17.《公募权益基金的舒适管理规模是多少?》
16.《权益基金增配科技,风格向小市值切换》
15.《海纳百川:权益基金经理全景标签池
14.《百舸争流:公募固收+产品盘点与剖析 |2021固收+产品投资策略展望
13.《群雄逐鹿,公募基金销售渠道之争
12.《银行获公募大幅加仓,港股龙头配置趋势不减》
11.《剖玄析微:公募对冲基金2020年报分析
10.《基金持仓跟踪牢,抱团风向早知道》
9.狭路相逢勇者胜:精选赛道下的精选基金框架
8.《分享注册制改革红利,把握网下打新机遇》
7.权益基金市场扩容万亿,龙头公司持股进一步集中
6.《公募权益基金智能图鉴》
5.《2020年打新策略对基金的收益增厚有多少?》
4.《公募绝对收益基金持续发力》
3.《透视机构抱团行为,量化视角全面解析》
2.《公募基金产品的绝对收益之路》
1.《基金反编译:绩优指数增强基金的绝技》

--量化研究--
16.《收益和波动共舞:非对称性理论蕴含的alpha》
15.《ChatGPT与研报文本情绪的碰撞》
14.《股价和资金流间的引力和斥力》
13.《可比公司法的量化实践:重塑价值因子》
12.《寻找选股策略与行业轮动策略的“舒适区”》
11.《个股alpha与行业beta的双剑合璧》
10.《震荡行情下,如何挑选估值合理、成长性强的“宝藏股”?》
9.《企业生命周期理论如何运用在选股中?》
8.《如何借鉴赛道型基金持仓?基于业绩归因视角》
7.《当价值遇见成长:均衡估值因子》
6.《成长因子再升级:盈利加速度》
5.《昼夜分离:隔夜跳空与日内反转选股因子》
4.《留存收益、投入资本视角下的估值因子改进》
3.《信息提纯,寻找高质量反转因子》
2.《量价关系的高频乐章》
1.《高频视角下成交额蕴藏的Alpha》

--中观量化--
4.《行业轮动逻辑的标签化应用:重构轮动框架》 

3.《企业生命周期理论如何运用在行业轮动中?》 

2.《消费升级,需求为王:景气度视角下的消费行业轮动策略》 

1.《盈利、估值视角下寻求板块轮动的确定性


--量化绝对收益之路--
5.《FOF赋能绝对收益:基金组合构建实战(下)》

4.《固收+组合构建白皮书:大时代的小尝试(下)

3.《固收+组合构建白皮书:大时代的小尝试(中)

2.《FOF赋能绝对收益:基金组合构建实战(上)》

1.《固收+组合构建白皮书:大时代的小尝试(上)》



--学海拾珠--
164.《MemSum:基于多步情景马尔可夫决策过程的长文档摘要提取
163.《奇异值分解熵对股市的动态预测能力
162.《基金超额能力、规模报酬递减与价值创造
161.《因子间相关性与横截面资产回报
160.《交易量对波动率的非对称效应
159.《基金定期报告中的文本语气能否预测未来业绩?
158.《因子投资中所蕴含的宏观经济风险
157.《基于隐含波动率和实际波动率的系统风险指标
156.《使用机器学习识别基金经理投资能力
155.《通胀是否会影响会计信息-股票价格间的相关性?
154.《信息不确定性、投资者情绪与分析师报告
153.《Alpha与风格因子的综合风险平价策略
152.《人工智能可以读懂企业高管的想法吗?
151.《A股的流动性、波动性及其溢出效应
150.《运用少量ETF可以复制主动基金的业绩吗?
149.《基于强化学习和障碍函数的自适应风险管理在组合优化中的应用
148.《投资者情绪能预测规模溢价吗
147.《基金抛售资产时的选择性偏差
146.《盈余公告披露的现象、方法和目的
145.《股票因子个性化:基于股票嵌入的因子优化
144.《动量、反转和基金经理过度自信》
143.《模糊因子与资产配置》
142.《chatGPT交易策略15个月收益500%+
141.《前景理论能否解释共同基金的业绩
140.《是否存在宏观公告溢价现象》
139.《利用深度神经网络改进时间序列动量策略
138.《基金的协偏度择时能力
137.《ETF交易与分析师预测
136.《基于堆叠自编码器和长短期记忆网络的金融时间序列深度学习框架
135.《基金窗口粉饰行为的新指标
134.《策略拥挤与流动性冲击
133.《盈余公告前的已实现测度是否能预测公告后的股票回报?
132.《共同基金的长周期表现如何?
131.《股票市场流动性、货币政策与经济周期》
130.《媒体效应如何影响基金投资者和基金经理的决策?》

129.《基于盈利公告发布日期的交易策略》

128.《基金在阶段业绩不佳后会调整激进程度吗?》

127.《20和21世纪风格因子表现的趋势和周期》
126.《基金持仓集中度究竟如何影响基金业绩?》
125.《投机股与止损策略》
124.《基金具有情绪择时能力吗?》
123.《如何管理投资组合波动率?》
122.《债基投资者关心哪些业绩指标?》
121.《投资者关注度在市场择时中的作用
120.《社会责任基金的业绩与持续性》
119.《基于财报文本的竞争关系与股票收益》
118.《基金投资者的真实择时能力如何?》
117.《技术相似性对股票收益的预测能力》
116.《ETF的资金流动是否蕴含独特信息?》
115.《BAB增强版:与包含定价噪音的Beta为敌》
114.《基金经理能选出好的“投机性”股票吗?》
113.《明星分析师能否在糟糕的信息环境中做出更好的覆盖决策?》
112.《股票短线交易与收益异象》
111.《分析师反应不足和动量策略》
110.《共同资金流Beta与因子定价》
109.《被动投资对共同基金管理能力和市场效率的影响》
108.《低频交易的主动基金业绩表现如何?》
107.《不同的回撤指标之间存在差异性吗?》
106.《基金公司内部的竞争与合作》
105.《隐藏在日历异象背后的市值效应》
104.《基金交易分歧与业绩影响》
103.《如何预测动量因子的表现?》
102.《“聪明钱”、“糊涂钱”与资本市场异象》
101.《无形资产对因子表现的影响》
100.《因子动量与动量因子》
99.《基金评级的变化是否会对股票价格产生系统性影响?》
98.《预期收益、成交量和错误定价之间的关系》
97.《基于回撤控制的最优投资组合策略》
96.《基金抛售对股票价格影响的外溢效应》
95.《已实现半Beta:区分“好的”和“坏的”下行风险》
94.《基金业绩面板回归模型的展望应用》
93.《如何构建更稳健的风险平价投资组合?》
92.《衰退期职业起点与基金业绩影响》
91.《资产配置与因子配置:能否建立统一的框架?》
90.《基金对业务单一公司的偏好》
89.《如何理解因子溢价的周期性?》
88.《货币政策的冲击对基金投资的影响》
87.《度量共同基金经理的绩效表现—基于松弛度经理绩效指数》
86.《基金业绩预测指标的样本外失效之谜》
85.《付出越多,回报越多?—基金公司调研行为与基金绩效的实证研究》
84.《时变的基金业绩基准》
83.《席勒市盈率与宏观经济环境》
82.《基金可持续性评级的公布与资金流量》
81.《关于资产分散化的新思考》
80.《应对通胀时期的最佳策略》
79.《如何基于持仓刻画共同基金的择时能力?》
78.《基金经理可以在股市错误估值时把握住择时机会吗?》
77.《企业盈余管理是否与分析师预测有关?》
76.《主成分分析法下的股票横截面定价因子模型》
75.《盈余公告前后的收益特征是否与投机性股票需求有关?》
74.《债券基金交易风格与市场流动性风险》
73.《高点锚定效应和跨公司收益预测》
72.《贝叶斯动态面板模型下的基金业绩持续性》
71.《企业员工流动对股票收益的影响》
70.《双重调整法下的基金业绩评价》
69.《持仓技术相似性与共同基金业绩》
68.《基金组合如何配置权重:能力平价模型》
67.《财务受限,货币政策冲击和股票横截面收益之间的关系》
66.《基金流动性不足会加剧资产价格的脆弱性吗?》
65.《基于分析师目标价格及相对估值的策略》
64.《基金的“择时”选股能力》

63.《凸显效应对股票收益的影响》

62.《国内基金经理更换对业绩的影响》

61.《流动性不足对股票横截面和时间序列收益的影响》

60.《使用同类基准来评估基金表现有何效果?》
59.《如何用现金流特征定义企业生命周期?》
58.《基金投资者与基金持股的“分割”关系》
57.《高成交量溢价能预测经济基本面信息吗?
56.《基金经理自购与基金风险》
55.《因子动量与行业动量,孰因孰果?》
54.《基金公司内部的信息传播速度》
53.《共同基金持仓拥挤度对股票收益的影响》
52.《基金的下行风险择时能力》
51.《社交媒体效应、投资者认知和股票横截面收益》

50.《投资者评价基金时会考虑哪些因素?》

49.《公司盈利季节性和股票收益》
48.《信息消化与资产定价
47.《日历更替:研究盈余公告发布时点影响的新视角》
46.《收益的季节性是由于风险还是错误定价?》
45.《公司复杂性对盈余惯性的影响》
44.《如何衡量基金经理把握股票基本面的能力?》
43.《企业预期管理与股票收益》
42.《基金的资金流压力会对股价造成冲击吗?》
41.《投资者对待公司财报措辞变化的惰性》
40.《处置偏差视角下的基金经理行为差异
39.《现金流能比利润更好的预测股票收益率吗?》
38.《基金经理个人投入度对业绩的影响
37.《历史收益的顺序能否预测横截面收益?》
36.《基金买卖决策与其引导的羊群效应》
35.《分析师重新覆盖对市场的影响 
34.《基金规模和管理能力的错配》
33.《股利是否传递了有关未来盈利的信息?
32.《基金换手提高能否增加收益?》
31.《基本面分析法下识别价值成长溢价的来源》
30.《有多少分析师建议是有价值的?》
29.《不同的经济环境下应如何配置资产》
28.《公募基金投资者是否高估了极端收益的概率》
27.《市场竞争对行业收益的影响
26.《基金竞争格局对Alpha持续性的影响》
25.《度量beta风险新视角:盈利beta因子》
24.《知情交易的高频指标》
23.《因子择时的前景和挑战
22.《基金在Alpha和偏度间的权衡》
21.《拥挤交易对板块轮动与因子择时的指示意义》
20.《横截面Alpha分散度与业绩评价》
19.《情绪Beta与股票收益的季节性》
18.《分解公募基金Alpha:选股和配权》
17.《企业规模刚性与股票收益》
16.《股票基金的窗口粉饰行为》
15.《风险转移与基金表现》
14.《基金经理的投资自信度与投资业绩》
13.《久期驱动的收益》
12.《基金重仓持股季末的收益反转异象》
11.《羊群效应行为是否能揭示基金经理能力?》
10.《主动基金的风格漂移》
9.《基于VIX的行业轮动和时变敏感度》
8.《市场日内动量》
7.《价格动量之外:基本面动量的重要性》
6.《优胜劣汰:通过淘汰法选择基金》
5.《分析师共同覆盖视角下的动量溢出效应》
4.《资产定价:昼与夜的故事》
3.《价格张力:股票流动性度量的新标尺》
2.《偏度之外:股票收益的不对称性》
1.《波动率如何区分好坏?》

--打新跟踪--

149.《10月新股发行量较少,单只个股首日涨幅趋高》

148.《新股涨幅继续回暖,打新情绪指数持积极态度

147.《新股涨幅底部回暖,打新账户数居于年内高位》

146.《节后首周新股遭破发,单周打新贡献收负》

145.《新股破发再现,9月打新收益回落至本年平均水平》

144.《近期新股涨幅进一步回落》

143.《新股涨幅有所“降温”,北证网上打新参与户数攀升》

142.《多只新股上市首日涨幅超100%,情绪维持”高温“》

141.《IPO“低速”运行,破发率处于历史低位》

140.《IPO节奏将阶段性收紧》

139.《打新赚钱效应持续,次新反复活跃》

138.《新股市场受资金追捧,打新收益陡升》

137.《破发改善,打新情绪指数持积极态度》

136.《创业板新股涨幅,参与账户数双升》

135.《科创板年内最大IPO华虹公司完成询价》

134.《创业板新股密集上市,月度打新收益率创新高》

133.《创业板新股收益回暖,情绪指数持积极态度》

132.《新股首日涨幅回暖,A类参与户数回升》

131.《农科巨头先正达成功过会,拟募资650亿元》

130.《本周新股涨幅环比下行,发行规模有所上升》

129.《5月双创破发率30%,主板打新收益回落》

128.《近期新股上市节奏维稳》

127.《新股首日涨幅分化,打新情绪底部回暖

126.《主板注册制运行满月,打新收益较为稳健

125.《4月创业板新股情绪回落,破发比例达62.5%》

124.《双创又见破发,打新收益环比下行

123.《首批注册制主板新股上市首日表现亮眼双创

122.《科创板新股首日涨幅回暖,首批注册制主板新股迎来上市

121.《首批注册制主板新股中签结果公布

120.《注册制首批主板新股询价状况如何?

119.《注册制下首批主板企业过会

118.《北交所迎本年首只网下询价新股

117.《二月上市节奏回温,打新收益环比上涨

116.《打新参与账户略有回升,核准制“扫尾”发行提速

115.《全面注册制正式文件落地

114.《打新收益显著上行,情绪指数维持积极态度

113.《情绪冷暖指数建议近期打新持积极态度

112.《1月发行节奏缓慢,打新收益环比下行

111.《北交所做市业务持续推进

110.《百花齐放不复在,潜心耕耘结硕果——2023年网下打新展望

109.《北证破发率居高,多家待上市企业下调发行底价

108.《2022年A类2亿资金打新收益率约3.47%

107.《新股收益与参与账户数环比维持稳定》

106.《新股收益环比小幅下行,本周维持零破发》

105.《双创打新收益稳步增长,北证迎来发行高峰》

104.《11月打新收益环比上行》

103.《北证50指数产品发行在即,推进北交所高质量扩容》

102.《打新收益企稳,参与账户数缓慢回升》

101.《北交所推出融资融券制度》

100.《北交所下半年发行提速,北证50成分股公布

99.《麒麟信安上市表现亮眼,10月打新收益回温》

98.《破发率降低,打新收益自底部回暖》

97.《科创板股票做市交易业务准备就绪》

96.《科创板破发幅度较大,参与账户数显著下降》

95.《新股破发率企高,上市涨幅较低》

94.《北交所开启网下询价,发行制度实践更加完善》

93.《破发有所改善,但上市涨幅仍维持低迷》

92.《破发再现,打新收益率显著降低》

91.《八月上市规模环比上升,打新收益创年内新高》

90.《新股上市涨幅维稳,本周维持零破发》

89.《打新收益持续回温,海光信息贡献突出》

88.《打新收益回暖,机构参与积极》

87.《7月新股破发率提升,打新收益环比下降》

86.《近期新股定价PE上移,破发比例或再度上升》

85.《新股涨幅下降,单周打新贡献为负》

84.《新股破发再现,仍需警惕定价较高风险》

83.《新股首发PE中枢回落,定价趋于理性》

82.《六月新股打新收益创今年新高》

81.《科创板打新参与账户数量回升》

80.《新股上市涨幅大幅回暖,账户数量趋稳》

79.《五月上市规模较小,但网下询价新股均未破发》

78.《询价新规常态化运作,打新收益测算调整》

77.《打新收益回暖,本周新股申购密集》

76.《询价节奏缓慢,本月尚未有注册制新股上市》

75.《新股破发率较高,近期询价节奏缓慢》

74.《4月科创板打新呈负收益,主板中国海油收益较高》

73.《新股破发加剧,部分固收+产品率先退出打新》

72.《近期新股上市首日涨幅维持低迷》

71.《机构打新参与度持续走低》

70.《机构精选个股参与打新,定价能力日益突出》

69.《新股再现密集破发,单周打新负贡献》

68.《打新市场回温,3月上旬打新收益已超2月》

67.《大族数控成节后首只破发新股,2月打新收益较低》

66.《本周询价新股密集,预计总募资过百亿》

65.《创业板已成为打新收益主要来源》

64.《节后上市节奏缓慢,本周暂无询价新股》

63.《2022年1月A类2亿资金打新收益率0.36%》

62.《新股表现大幅回暖,单周打新贡献突出》

61.《上周市场情绪不佳,新股现密集破发》
60.《北证网上申购热情高涨,本周科创板打新负收益》
59.《发行节奏稳中有进,打新制度红利尚存——网下打新2021回顾与2022展望》
58.《2021全年新股发行规模超5000亿》
57.《2021至今A类2亿资金打新收益率12%》
56.《北交所网下投资者管理特别条款正式发布》
55.《新规后新股上市日内价格怎么走?》
54.《新股上市表现回暖,参与账户数趋稳》
53.《科创板年内最大新股百济神州询价待上市》

52.《从收益角度调整打新能力评价指标》

51.《北交所首批IPO新股采用直接定价发行》

50.《打新账户数量降低,机构参与热情下降》

49.《多只新股破发,打新收益曲线调整》

48.《新股发行价显著上行,中自科技上市首日破发》

47.《部分新股定价突破“四值”孰低》

46.《网下询价分散度提升,有效报价区间拓宽

45.《本周注册制新股询价新规正式落实》

44.《如何估测未来网下打新收益率?》

43.《打新账户数量企稳,预计全年2亿A类收益率11.86%》

42.《新股上市涨幅回落,下调打新收益预期》
41.《2021至今A类2亿资金打新收益率9.8%》
40.《注册制发行制度优化、促进定价博弈平衡》
39.《从交易情绪中预测次新股走势》
38.《各类“固收+”打新基金推荐 》
37.《新股上市后价格一般怎么走?(下)》
36.《新股上市后价格一般怎么走?(中)》
35.《新股上市后价格一般怎么走》
34.《新股上市首日流动性分析》
33.《2021上半年打新回顾:常态发行,稳中有进》
32.《寻找主动进取型打新固收+产品》
31.《寻找红利低波型打新固收+产品》
30.《寻找防御型打新固收+产品》
29.《年内最大新股三峡能源等待上市
28.《单周上市规模200亿,和辉光电涨幅不及预期》
27.《优质新股集中上市,单周打新收益突出》
26.《新股上市首日最佳卖出时点有所后移》
25.《新股发行稳中有升,IPO排队现象缓和》
24.《2021新股上市规模破千亿 
23.《新股上市节奏趋于平稳,上市表现有所回暖》
22.《2021打新收益的规模稀释效应更加显著》
21.《科创板C类打新账户数量渐超A类》
20.《单周新股上市规模超百亿,3月规模环比上升》
19.《注册制上市涨幅维持150%,主板略微回落
18.《A类账户数量企稳,2021打新收益可期》
17.《极米科技上市涨幅超300%,打新贡献显著
16.《IPO发行常态化,2021新股规模可期》
15.《2021至今A类2亿资金打新收益率1.3%》
14.《1月新股上市规模同比下降》
13.《滚动跟踪预测2021打新收益率》
12.《基金打新时的资金使用效率有多少?》
11.《A股IPO发行定价历程回望
10.《注册制助推IPO提速,2021新股储备较为充足》
9.《如何筛选打新基金?》
8.《如何测算2021年网下打新收益率?》
7.《6个月锁定期对打新收益有何影响?》
6.《新股何时卖出收益最高?(下)》
5.《新股何时卖出收益最高?(上)》
4.《网下询价谋定而后动》
3.《从参与率和入围率两个角度筛选打新基金》
2.《网下打新报价入围率整体略有下滑》
1.《新股上市降速,蚂蚁暂缓发行》

--其他研究--
--指数研究--
6.《编制规则修改,沪深300指数或迎新成员——2021年12月主要指数样本股调整预测》
5.《2021年6月主要指数样本股调整预测
4.《美国ETF监管新规导读》
3.《沪深300杠杆反向基金在港交所上市》
2.《半透明主动ETF:海外资管新风口》
1.《亚洲首支权益主动型ETF在香港上市
--事件点评--
5.《全面注册制改革启动,打新收益或重获关注
4.《震荡环境下的A股市场展望》
3.《侧袋机制在公募产品中的应用展望》
2.《上证综指编制规则优化简评》
1.《T+0交易制度的境外发展与境内探索》
--数据智库--
7.《2021Q2基金重仓股与重仓债券数据库》
6.《2021Q1基金重仓股与重仓债券数据库》
5.《打新策略定期跟踪数据库》
4.《权益基金定期跟踪指标库》
3.《2020Q3基金重仓股与重仓债券数据库》
2.《ETF跟踪模板发布》
1.《指数增强基金跟踪模板发布
--产品分析--

12.《华商基金孙志远:稳守反击型FOF名将》

11.《华商基金张晓:俯筛赛道,仰寻个股》

10.《以静制动,顺势而为:景顺长城中证红利低波动100ETF投资价值分析》
9.《华商基金余懿:注重平衡,兼顾逆向和景气》
8.《华商基金彭欣杨:自上而下与自下而上相结合》
7.《华商基金厉骞:擅长进攻的”固收+“名将》
6.《华富基金尹培俊:擅长资产配置的绩优“固收+”舵手》
5.《华富成长趋势投资价值分析报告》
4.《创业板中报业绩亮眼,创业板指配置正当时》
3.《宽基中的宽基:国泰上证综指ETF投资价值分析》
2.《聚焦行业龙头,布局电子赛道》
1.《应对不确定性,黄金配置正当时》


关于本公众号
“金工严选”公众号记录华安证券研究所金融工程团队的研究成果,欢迎关注

重要声明

适当性说明

《证券期货投资者适当性管理办法》于2017年7月1日起正式实施,通过本微信订阅号/本账号发布的观点和信息仅供华安证券的专业投资者参考,完整的投资观点应以华安证券研究所发布的完整报告为准。若您并非华安证券客户中的专业投资者,为控制投资风险,请取消订阅、接收或使用本订阅号/本账号中的任何信息。本订阅号/本账号难以设置访问权限,若给您造成不便,敬请谅解。我司不会因为关注、收到或阅读本订阅号/本账号推送内容而视相关人员为客户。市场有风险,投资需谨慎。


投资评级说明

以本报告发布之日起12个月内,证券(或行业指数)相对于沪深300指数的涨跌幅为标准,定义如下:

行业及公司评级体系

买入—未来6-12个月的投资收益率领先市场基准指数15%以上;增持—未来6-12个月的投资收益率领先市场基准指数5%至15%;中性—未来6-12个月的投资收益率与市场基准指数的变动幅度相差-5%至5%;减持—未来6-12个月的投资收益率落后市场基准指数5%至15%;卖出—未来6-12个月的投资收益率落后市场基准指数15%以上;无评级—因无法获取必要的资料,或者公司面临无法预见结果的重大不确定性事件,或者其他原因,致使无法给出明确的投资评级。市场基准指数为沪深300指数。


分析师承诺

本人具有中国证券业协会授予的证券投资咨询执业资格,以勤勉的职业态度、专业审慎的研究方法,使用合法合规的信息,独立、客观地出具本报告,本报告所采用的数据和信息均来自市场公开信息,本人对这些信息的准确性或完整性不做任何保证,也不保证所包含的信息和建议不会发生任何变更。报告中的信息和意见仅供参考。本人过去不曾与、现在不与、未来也将不会因本报告中的具体推荐意见或观点而直接或间接收任何形式的补偿,分析结论不受任何第三方的授意或影响,特此证明。


免责声明

华安证券股份有限公司经中国证券监督管理委员会批准,已具备证券投资咨询业务资格。本报告中的信息均来源于合规渠道,华安证券研究所力求准确、可靠,但对这些信息的准确性及完整性均不做任何保证,据此投资,责任自负。本报告不构成个人投资建议,也没有考虑到个别客户特殊的投资目标、财务状况或需要。客户应考虑本报告中的任何意见或建议是否符合其特定状况。华安证券及其所属关联机构可能会持有报告中提到的公司所发行的证券并进行交易,还可能为这些公司提供投资银行服务或其他服务。


本报告仅向特定客户传送,未经华安证券研究所书面授权,本研究报告的任何部分均不得以任何方式制作任何形式的拷贝、复印件或复制品,或再次分发给任何其他人,或以任何侵犯本公司版权的其他方式使用。如欲引用或转载本文内容,务必联络华安证券研究所并获得许可,并需注明出处为华安证券研究所,且不得对本文进行有悖原意的引用和删改。如未经本公司授权,私自转载或者转发本报告,所引起的一切后果及法律责任由私自转载或转发者承担。本公司并保留追究其法律责任的权利。


有态度的金融工程&FOF研究

长按识别二维码关注我





本篇文章来源于微信公众号: 金工严选

本文链接:http://17quant.com/post/%E3%80%90%E5%8D%8E%E5%AE%89%E9%87%91%E5%B7%A5%E3%80%91%E8%B5%84%E4%BA%A7%E5%A2%9E%E9%95%BF%E7%8E%87%E5%9C%A8%E8%B5%84%E4%BA%A7%E5%AE%9A%E4%BB%B7%E4%B8%AD%E7%9A%84%E4%BD%9C%E7%94%A8%E2%80%94%E2%80%94%E2%80%9C%E5%AD%A6%E6%B5%B7%E6%8B%BE%E7%8F%A0%E2%80%9D%E7%B3%BB%E5%88%97%E4%B9%8B%E4%B8%80%E7%99%BE%E5%85%AD%E5%8D%81%E4%B9%9D.html 转载需授权!

分享到:

相关文章

【华安金工】基于残差因子分布预测的投资组合优化——“学海拾珠”系列之一百七十五

【华安金工】基于残差因子分布预测的投资组合优化——“学海拾珠”系列之一百七十五

报告摘要►主要观点本篇是“学海拾珠”系列第一百七十五篇,文章提出了一种新的基于预测谱残差因子的分布来构建投资组合的策略,能以较高的计算效率提取残差信息,同时对金融归纳偏差有效建模。·对冲市场因子风险的...

【中信建投 金融工程】市场估值低位,通信传媒计算机等行业看涨——行业基本面量化模型跟踪月报(2023年9月)

【中信建投 金融工程】市场估值低位,通信传媒计算机等行业看涨——行业基本面量化模型跟踪月报(2023年9月)

重要提示:通过本订阅号发布的观点和信息仅供中信建投证券股份有限公司(下称“中信建投”)客户中符合《证券期货投资者适当性管理办法》规定的机构类专业投资者参考。因本订阅号暂时无法设置访问限制,若您并非中信...

中金 | 量化观市:市场修复进行时

中金 | 量化观市:市场修复进行时

全周回顾:市场大幅上涨,石化食饮强势,成长优于价值,贴水总体收敛1)市场大幅上涨:经历了前期的弱势行情后,A股市场在本周大幅上涨,表征市场走势的各宽基指数均有较大涨幅,最终沪深300、中证500、创业...

多家头部金融机构联合设立"投顾学院‘’【国信金工】

多家头部金融机构联合设立"投顾学院‘’【国信金工】

  报 告 摘 要  一、上周市场回顾上周A股市场主要宽基指数走势出现分化,科创50、中证1000、中证500收益靠前,收益分别为0.56%...

【中信建投策略】小盘风格延续,出口链表现靠前

【中信建投策略】小盘风格延续,出口链表现靠前

重要提示:通过本订阅号发布的研究观点和信息仅供中信建投证券股份有限公司(下称“中信建投”)客户中符合《证券期货投资者适当性管理办法》规定的机构类专业投资者参考。因本订阅号暂时无法设置访问限制,若您并非...

中金 | 中金ESG评级2023Q2更新

中金 | 中金ESG评级2023Q2更新

Abstract摘要中金ESG评级体系V1.0版本于2022年底搭建完成,通过《中金ESG评级:总览》及《中金ESG评级:能源行业》等11个行业篇报告介绍了中金ESG评级体系方法论。从2023Q1开始...

发表评论    

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。