大容量国证2000增强策略——德邦金工小市值专题之三

admin2年前研报1004

 摘要 


投资要点

国证2000成分股适合作为小市值风格增强策略的基准股票池。1)相比中证1000,国证2000更代表小盘风格:2月初平均流通市值为39.34亿,同期中证1000为62.12亿;2)国证2000策略容量更大,成分股比中证1000多一倍,且每周累计成交金额基本在中证1000和微盘股指数上方;3)国证2000更贴合“专精特新”。涵盖的专精特新股票数量更多(国证2000为297只,中证1000为142只),流通市值更低(国证2000为40.12亿,中证1000为64.53亿)。国证2000包含更多的成长、“小而精”的制造业企业。


小市值策略的收益来源主要是捕捉“规模溢价”效应,“规模溢价”效应在国证2000成分股内十分明显。使用规模因子对国证2000成分股分组回测,2019年以来组1到组5的超额年化收益率分别是-1.6%、-4.5%、3.5%、6.9%和12.1%,多头组超额收益较高,但并非完全单调。我们认为可以结合机器学习因子来增强国证2000小市值投资策略的稳定性。


机器学习模型在国证2000指数内增强的效果,机器学习残差因子、反转因子和复合因子分组回测都具有稳健的单调性。多头组超额年化收益分别为9%,10.5%和10.8%。对复合因子收益归因分析,风格贡献2.88%,行业贡献0.77%,其余7.22%为特质选股能力贡献。


我们将机器学习复合因子与规模因子合成为新的选股因子,构建国证2000增强策略。机器学习超额收益能力并未能打败小市值策略,我们希望国证2000增强策略既暴露于小市值风格,还具有更稳定的收益单调性。因此,我们将机器学习复合因子与规模因子合成为新的选股因子。合成因子多头组的超额年化收益率为15.4%。其中风格贡献5.52%,行业贡献1.2%,其余8.69%均为因子特质选股能力贡献。国证2000增强策略更多的暴露于风格和行业,特质选股收益也大幅提高。


国证2000增强策略的资金容量在100亿左右。分别使用初始5亿、10亿、20亿、50亿、100亿和200亿资金规模回测,超额年化收益率分别是14.6%、14.3%、14%、13.5%、12.8%和10.7%。


风险提示

市场风格切换风险,市场波动风险,模型失效风险。



目 录


1. 国证2000

1.1. 更代表小盘风格

1.2. 更大的策略容量

1.3. 更典型的专精特新

2. 国证2000成分股因子有效性分析

2.1. Barra CNE 5 10因子表现

2.2. 规模因子表现——国证2000小市值策略

3. 机器学习模型

3.1. 计算特质收益率

3.2. 挖掘财务因子

3.3. 机器学习残差因子

3.4. 机器学习反转因子

3.5. 机器学习复合因子

4. 国证2000机器学习策略表现

4.1. 国证2000机器学习15因子残差策略

4.2. 国证2000机器学习15因子反转策略

4.3. 国证2000机器学习15因子复合策略

4.4. 国证2000增强策略(合成因子:机器学习复合因子+规模因子)

4.5. 策略容量测试

5. 总结

6. 风险提示

信息披露


正 文



1.国证2000


国证2000指数(399303.SZ)由国证公司编制,是为反映A股市场小盘股票的价格变动趋势,按照市值和成交金额在市场中所占比例的综合排名,选取排名在1001及3000的股票构成的指数。即在扣除国证1000指数样本股后,选取市值和成交金额在市场中所占比例排名靠前的2000只股票作为成分股。国证2000指数具有典型的小盘风格。


1.1. 更代表小盘风格


国证2000指数成分股的流通市值相对更小,更能代表小盘股,如图1。2023年2月初国证2000成分股的平均流通市值是39.34亿,同期中证1000平均62.12亿。



1.2.更大的策略容量


国证2000拥有更大的策略容量。国证2000的2000只成分股比中证1000多一倍,且每周累计成交金额基本在中证1000和微盘股指数上方。如图2,2023年2月20日至2月24日,国证2000指数的成交金额为13891.44亿,中证1000 指数为9002.09亿,万得微盘股指数(8841431.WI)为721.91亿。



1.3.更典型的专精特新


如图3、图4和图5,我们统计了2023年2月27日专精特新小巨人指数(8841451.WI)、国证2000指数、中证1000指数的中信一级行业成分股占比情况:







相比于中证1000,国证2000在机械、电子、基础化工行业成分股占比分布更靠近专精特新小巨人指数。


图6和图7展示了中证1000和国证2000指数成分股和专精特新小巨人指数成分股的交集股票数量及其平均流通市值情况。国证2000涵盖的专精特新股票数量更多一些,流通市值也更低一些。相比中证1000,国证2000更能代表成长、“小而精”的制造业企业。





2.国证2000成分股因子有效性分析


本文致力于挖掘更偏小盘风格、稳定的国证2000增强策略。因此,在因子有效性分析章节,我们在2.1节中统计主要的风格因子在国证2000、中证1000和中证800中3个指数股票池的显著情况,比较各类风格因子显著性差异。


之后,在2.2节使用规模因子对国证2000股票池分组回测,观察规模因子的单调性表现,确定小市值风格国证2000增强策略的基准表现。


2.1.Barra CNE 5 10因子表现


我们回顾Barra CNE5的10个风格因子2015年以来在国证2000、中证1000和中证800指数成分股内因子Rank Mean IC和ICIR表现,如表1:


1)国证2000成分股内,对数市值、动量、残差波动率、非线性市值、账面市值比、流动性风格因子的显著性更高;


2)中证800成分股内,beta因子和盈利因子的显著性更高;


3)中证1000成分股内,因子有效性基本介于国证2000和中证800成分股之间。


国证2000偏小盘,中证800偏大盘的特点,与“国证2000技术面因子更有效,中证800基本面类因子更有效”的逻辑是一致的。



2.2.规模因子表现——国证2000小市值策略


小市值策略的核心收益来源是捕捉规模溢价效应的收益。我们在《小市值专题一》中阐明了小市值策略的投资逻辑:规模溢价、投资者结构和卖空显著、“壳价值”。我们分5组回测规模因子自2019年以来在国证2000成分股的单调性表现,如图8和表2:


本文的选股和交易规则如下:

    1)剔除北交所、停牌和涨停股票;

    2)剔除上市不满120个交易日的股票;

    3)基准是国证2000指数399303.SZ;

    4)月度调仓,每月月初调仓;

    5)交易费用双边千三。


对国证2000成分股符合上述条件后按因子值分5组,平均每期每组入选股票数量约390只。



我们发现,规模因子的在国证2000成分股内并非完全单调。组1到组5的超额年化收益率分别是-1.6%、-4.5%、3.5%、6.9%和12.1%。组2比组1的年化超额更低。国证2000小市值策略(组5)的超额年化达到了12.1%。虽然规模因子的多头组超额收益较高,但由于组1到组5超额收益单调性不够明显,我们认为可以结合其他因子来增强国证2000小市值投资策略的稳定性。



3.机器学习模型


我们在过往发布了5篇机器学习专题报告,发布了3个有效因子,分别是“机器学习残差因子”、“机器学习反转因子”和“机器学习复合因子”。本章我们重温这3个因子的构建方式,并在下章统计3个因子在国证2000成分股内选股能力。


3.1.计算特质收益率


本文使用《基于财务与风格因子的机器学习选股——德邦金工机器学习专题之三》的方法,基于财务因子和风格因子构造一个风格中性的选股因子,该因子在各个横截面上与各个CNE5风格因子都线性无关。基于该因子构造的投资组合的风格暴露很低,但我们允许投资组合在财务因子上有暴露。


首先,计算股票特质收益率,将本期的股票回报记为  ,把上一期的风格因子记为  。用CNE5风格因子WLS回归股票收益率:



其中,  为风格因子的拟合系数,  为股票的特质收益率。


3.2.挖掘财务因子

对于任意一个财务因子  , 若上一期该财务因子值为  ,则按以下公式计算财务因子的变化率  :



由于上一期财务因子值  (例如总利润)有可能为负,故对(2)中分母取绝对值以反映财务因子的真实变化方向。选择了以下5个财务因子:



为了避免财务因子极端值对模型的不利影响,对每一个财务因子,在每一个横截面上,我们采用中位数去极值的方法去除极端值。


   

其中,  是任意一个财务因子的值,  是因子值在横截面上的中位数,D是序列  的中位数,n是一个参数,通常可以取3,而  为去极值后的结果。


3.3.机器学习残差因子


我们的目的是构造一个不暴露风格,但力求赚取特质收益率的投资组合。我们把风格因子和其他因子作为机器学习模型的输入,拟合特质收益率  ,即:


 

其中  为机器学习函数,而  是机器学习模型的拟合残差。


使用到的机器学习模型包括2个具有不同神经元个数的神经网络模型、3个具有不同树数目的随机森林模型和3个具有不同深度的提升树模型。对每一类机器学习模型,计算子模型预测的代数平均值,再得到三类集成模型的输出。将三类集成模型的输出做z-score标准化后计算其平均值,得到总集成输出值。这么做的好处是尽可能让不同的模型拟合不同的噪音,并在总集成输出中尽可能降低噪音。接下来,将机器学习模型作用于最近一期的风格和财务因子上,得到机器学习因子  即:



其中,T日为调仓日的前一日,  和  分别是对应的风格和财务因子值,日的因子在日盘后可得,故  只能被用在日进行调仓。  对风格因子取正交化处理,得到机器学习残差因子  ,对全市场而言, 因子 是风格中性的,却可以暴露于财务因子的特定方向。


3.4.机器学习反转因子


我们再来分析上一节的式(4),其中的  项是机器学习模型对在T日已知的特质收益率的拟合值,这个拟合值通常不等于该特质收益率。在调节模型参数和超参数阶段,如果模型复杂度过高,则模型虽然在样本内表现良好,但在样本外表现很差,产生过拟合问题。因此,拟合残差  通常是显著不为零的。


实际上,  蕴含了丰富的信息我们可以将理解为模型意义下公允的日至日的股票收益率,那么余下的  部分是不能被模型解释的部分。在理想情况下,如果模型对收益率的预测是完全正确的,则  是纯粹的错误定价,倾向于在未来发生反转。实际情况下,模型对收益率具有一定的解释力度,但由于信息或模型的非完备性而无法完全解释,故  既包含模型不能解释的部分,也包含错误定价的成分,其中,前者的方向不确定,后者倾向于在未来反转。因此,也应该具有选股能力,且暴露于较小的  是有益的。同样地,我们不希望组合具有风格偏好,故将  的相反数对风格因子  做正交化处理:


 


其中, 为根据OLS拟合得到的风格因子的系数,而 是拟合残差,我们把它称为机器学习反转因子。

3.5.机器学习复合因子


对残差因子和反转因子等权复合后,得到机器学习复合因子。在每个横截面上,我们将机器学习残差因子和机器学习反转因子分别做z-score处理并相加以计算复合残差因 即:


 

其中 和 的含义同上文,而 和 分别为横截面上机器学习残差因子的均值和标准差, 和 分别为横截面上机器学习反转因子的均值和标准差。


4.国证2000机器学习策略表现


4.1.国证2000机器学习15因子残差策略


国证2000机器学习15因子残差策略分组回测表现如图9和表4:


机器学习残差因子分组回测具有稳健的单调性和较好的分组能力。但多头组超额年化收益只有9%,并不能打败只使用规模因子选股。


4.2.国证2000机器学习15因子反转策略


国证2000机器学习15因子反转策略分组回测表现如图10和表5:



机器学习反转因子分组回测具有稳健的单调性和较好的分组能力。多头组超额年化收益为10.5%,比残差因子效果更好,但仍不能打败规模因子。



4.3.国证2000机器学习15因子复合策略


国证2000机器学习15因子复合策略分组回测表现如图11和表6:



机器学习复合因子分组回测具有稳健的单调性和较好的分组能力。多头组超额年化收益为10.8%,比残差因子和反转因子效果更好,但仍不能打败规模因子。可见,小市值风格强劲,规模溢价效应在国证2000成分股内十分明显。



对表现最好的机器学习复合因子多头策略的收益归因进行拆解(基准是国证2000指数),分别拆解为因子暴露收益(Barra CNE5 10因子)、行业暴露收益(中信一级行业)和因子特质收益。如表7、表8和图12:



机器学习复合因子主要暴露于对数市值(规模风格)和残差波动率(波动风格)。



机器学习复合因子主要暴露于机械、基础化工、国防军工行业,机器学习复合因子策略组合在行业上相对于基准基本是中性的。



机器学习复合因子策略在国证2000股票池中多头组的超额年化收益率为10.76%,其中风格贡献2.88%,行业贡献0.77%,其余7.22%均为因子特质选股能力贡献。


4.4.国证2000增强策略(合成因子:机器学习复合因子+规模因子)


我们使用机器学习因子来增强仅使用规模因子(国证2000小市值策略)的选股能力,构建最终的国证2000增强策略。


具体方法是:我们选取机器学习复合因子与规模因子,在每期国证2000成分股横截面内Rank排序后等权合成为新的合成因子。新的合成因子既继承了机器学习因子优秀、稳定的分层选股能力,也更主动暴露于小市值风格。做到了机器学习量化相对的风格中性和行业中性与小市值风格融合后的增强。


国证2000增强策略分组回测表现如图13和表9:



合成因子选股效果比单一的规模因子或机器学习复合因子效果更好。组1到组5的超额年化收益率单调性更加明显。国证2000成分股中,合成因子策略的多头组的超额年化收益率为15.4%。



对表现最好的机器学习复合因子多头策略的收益归因进行拆解(基准是国证2000指数),分别拆解为因子暴露收益(Barra CNE5 10因子)、行业暴露收益(中信一级行业)和因子特质收益。如表10、表11和图14:



相比机器学习复合因子,合成因子的超额收益来源更多的是暴露于风格因子。



相比机器学习复合因子,合成因子更多的暴露于机械、医药、国防军工、轻工、纺织服装、电子等行业。



国证2000增强策略多头组的超额年化收益率为15.41%,其中风格贡献5.52%,行业贡献1.2%,其余8.69%均为因子特质选股能力贡献,3大收益归因均较机器学习复合因子有所提高。


4.5.策略容量测试


我们测试国证2000增强策略(机器学习复合因子+规模因子)的策略容量。单只股票最大买入卖出金额占比设置为当日成交量的5%。分别回测了5亿、10亿、20亿、50亿、100亿和200亿资金规模下策略的表现情况如图15和表12所示:



5亿、10亿、20亿、50亿、100亿和200亿资金规模下的国证2000合成因子增强策略的超额年化收益率分别是14.6%、14.3%、14%、13.5%、12.8%和10.7%。我们认为国证2000增强策略的容量可以维持在100亿左右。



5.总结


国证2000成分股适合作为小市值风格增强策略的基准股票池,相比中证1000,国证2000更代表小盘风格。2023年2月初,国证2000的平均流通市值为39.34亿,同期中证1000为62.12亿。国证2000策略容量更大,成分股比中证1000多一倍,且每周累计成交金额基本在中证1000和微盘股指数上方。


国证2000更贴合“专精特新”。涵盖的专精特新股票数量更多(国证2000为297只,中证1000为142只),流通市值更低(国证2000为40.12亿,中证1000为62.53亿)。相比中证1000,国证2000更能代表成长、“小而精”的制造业企业。


因子显著性统计显示,国证2000成分股内,对数市值、动量、残差波动率、非线性市值、账面市值比、流动性风格因子的显著性更高;中证800成分股内,beta因子、盈利因子的显著性更高。国证2000偏小盘,中证800偏大盘的特点,与“国证2000技术面因子更有效,中证800基本面类因子更有效”的逻辑是一致的。


规模溢价效应在国证2000成分股内十分明显。使用规模因子对国证2000成分股分组回测,2019年以来组1到组5的超额年化收益率分别是-1.6%、-4.5%、3.5%、6.9%和12.1%,多头组超额收益较高,但并非完全单调。我们认为可以结合机器学习因子来增强国证2000小市值投资策略的稳定性。


我们测试机器学习模型在国证2000指数内增强的效果,机器学习残差因子、反转因子和复合因子分组回测都具有稳健的单调性。多头组超额年化收益分别为9%,10.5%和10.8%。对复合因子收益归因分析,风格贡献2.88%,行业贡献0.77%,其余7.22%为特质选股能力贡献。


我们将机器学习复合因子与规模因子合成为新的选股因子,构建国证2000增强策略。机器学习超额收益能力并未能打败小市值策略,我们希望国证2000增强策略既暴露于小市值风格,还具有更稳定的收益单调性。因此,我们将机器学习复合因子于规模因子合成为新的选股因子。合成因子多头组的超额年化收益率为15.4%。其中风格贡献5.52%,行业贡献1.2%,其余8.69%均为因子特质选股能力贡献。合成因子更多的暴露于风格和行业,特质选股收益也大幅提高。


国证2000增强策略的资金容量在100亿左右。分别使用初始5亿、10亿、20亿、50亿、100亿和200亿资金规模回测,超额年化收益率分别是14.6%、14.3%、14%、13.5%、12.8%和10.7%。


6.风险提示

市场风格切换风险,市场波动风险,模型失效风险。 


报告信息

证券研究报告:《大容量国证2000增强策略-德邦金工小市值专题之三》

对外发布时间:2022年3月7日

分析师:肖承志

资格编号:S0120521080003

邮箱:xiaocz@tebon.com.cn

报告发布机构:德邦证券股份有限公司

(已获中国证监会许可的证券投资咨询业务资格)


分析师简介


肖承志,同济大学应用数学本科、硕士,现任德邦证券研究所首席金融工程分析师。具有6年证券研究经历,曾就职于东北证券研究所担任首席金融工程分析师。致力于市场择时、资产配置、量化与基本面选股。撰写独家深度“扩散指标择时”系列报告;擅长各类择时与机器学习模型,对隐马尔可夫模型有深入研究;在因子选股领域撰写多篇因子改进报告,市场独家见解。


吴金超,清华大学工学硕士,南开大学本科,曾任职于东北证券、广发证券,2021年11月加入德邦证券。主要负责指数择时、行业轮动、基本面量化选股等工作。


林宸星,美国威斯康星大学计量经济学硕士,上海财经大学本科,主要负责大类资产配置、中低频策略开发、FOF策略开发、基金研究、基金经理调研和数据爬虫等工作,2021年9月加入德邦证券。


路景仪,上海财经大学金融专业硕士,吉林大学本科,主要负责基金研究,基金经理调研等工作,2022年6月加入德邦证券。


王治舜,香港中文大学金融科技硕士,电子科技大学金融+计算机双学士,主要负责量化金融、因子选股等工作,2023年1月加入德邦证券。


感谢实习生王宣淇和管俊凯对本文的贡献。

MORE

相关阅读

01  策略报告

【德邦金工|年度策略】全球成长股或将迎来绝地反击——德邦金工2023年度策略报告

【德邦金工|中期策略】“脱缰”的“小巨人”20220908

【德邦金工|年度策略】进击的“小巨人” 20211216

【德邦金工|中期策略】云销雨霁,尚待黎明20210824

02  每周行情前瞻

【德邦金工|周报】A 股上涨领先全球,消费、通信行业景气度居前 ——德邦金工择时周报 20230305

【德邦金工|周报】A 股上涨领先全球,家电、非银行业景气度提升 ——德邦金工择时周报 20230226

【德邦金工|周报】创业类ETF净流入继续居前,融资买入计算机、国防军工 ——德邦金工择时周报20230219

【德邦金工|周报】北向资金买入食饮、非银,创业类ETF净流入居前——德邦金工择时周报20230212

【德邦金工|周报】节后首周两市成交明显放大,证券ETF净流入居前——德邦金工择时周报20230205

【德邦金工|周报】A股继续收红,军工类ETF净流入整体居前——德邦金工择时周报20230115

【德邦金工|周报】市场情绪修复,TMT行业ETF净流入居前——德邦金工择时周报20230108

【德邦金工|周报】A股整体上涨收官,房地产融资净买入继续居前——德邦金工择时周报20230101

【德邦金工|周报】融资净买入房地产,红利ETF净流入居前——德邦金工择时周报20221225

【德邦金工|周报】北向买入医药、银行,创业类指数标的ETF净流入持续居前——德邦金工择时周报20221218

【德邦金工|周报】A股主要指数集体上涨,创业类指数标的ETF净流入居前——德邦金工择时周报20221211

【德邦金工|周报】A股渐入佳境整体上涨,沪深300指数标的ETF净流入居前——德邦金工择时周报20221204

【德邦金工|周报】北上资金加仓银行、食饮,中证500标的ETF净流入持续居前——德邦金工择时周报20221127

【德邦金工|周报】A股温和震荡,医药板块获北上资金青睐——德邦金工择时周报20221120

03  大类资产配置观点

【德邦金工|月报】从追赶现实到改变预期20220127

【德邦金工|月报】美国通胀的远虑与近忧20211120

【德邦金工|月报】商品与美元对局的前夜20211018

04  机器学习专题

【德邦金工|选股专题】中证1000成分股有效因子测试——中证1000指数增强系列研究之一

【德邦金工|选股专题】基于模型池的机器学习选股——德邦金工机器学习专题之五

【德邦金工|选股专题】动态因子筛选——德邦金工机器学习专题之四

【德邦金工|机器学习】基于财务与风格因子的机器学习选股——德邦金工机器学习专题之三

【德邦金工|机器学习】机器学习残差因子表现归因 —— 德邦金工机器学习专题之二

【德邦金工|机器学习】利用机器学习捕捉因子的非线性效应 —— 德邦金工机器学习专题之一

05  金融产品时评

【德邦金工|专题】建议2月继续布局成长股 20230129

【德邦金工|金工点评】中证1000指数——公募指数与量化必争的下一个蓝海赛道20220624

【德邦金工|点评】MSCI中国A50互联互通指数期货上市,A股迎来新助力 20211024

06  金融产品专题

【德邦金工|金融产品专题】科技革新成长,军工锐意前行,推荐关注国防军工ETF ——德邦金融产品系列研究之十九

【德邦金工|金融产品专题】后疫情时代,物流行业有望复苏,推荐关注物流ETF ——德邦金融产品系列研究之十八

【德邦金工|金融产品专题】势不可挡,坚定不移走科技强国之路,推荐关注华宝中证科技龙头ETF——德邦金融产品系列研究之十七

【德邦金工|金融产品专题】“抓住alpha,等待beta”,华宝夏林锋主动出击“三年一倍”目标——德邦权益基金经理系列研究之一

【德邦金工|金融产品专题】乘大数据战略机遇,握新时代“价值资产”,推荐关注大数据ETF——德邦金融产品系列研究之十六

【德邦金工|金融产品专题】招商中证1000指数增强——细分赛道下的“隐形冠军”——德邦金融产品系列研究之十五

【德邦金工|金融产品专题】长风破浪,王者归来,纳斯达克100ETF再启航——德邦金融产品系列研究之十四

【德邦金工|金融产品专题】风劲帆满海天远,雄狮迈步新征程,推荐关注军工龙头ETF——德邦金融产品系列研究之十三

【德邦金工|金融产品专题】“小”“智”“造”与大机遇,推荐关注中证1000ETF——德邦金工金融产品系列研究之十二

【德邦金工|金融产品专题】“专精特新”政策赋能,小市值投资瞬时顺势,推荐关注国证2000ETF——德邦金工金融产品研究之十一

【德邦金工|金融产品专题】面向未来30年,布局“碳中和”大赛道,推荐关注碳中和龙头ETF——德邦金工金融产品研究之十

【德邦金工|金融产品专题】互联网东风已至,龙头反弹可期,推荐关注互联网龙头ETF——德邦金融产品系列研究之九

【德邦金工|金融产品专题】需求旺盛供给紧俏,稀土ETF重拾上升趋势——德邦金融产品系列研究之八

【德邦金工|金融产品专题】周期拐点将至,地缘冲突催化行业景气上行,关注农业ETF——德邦金融产品系列研究之七

【德邦金工|金融产品专题】新能源车需求超预期,动力电池新产能涌现,关注锂电池ETF——德邦金融产品系列研究之六

【德邦金工|金融产品专题】稳增长预期下高股息低估值凸显投资价值,关注中证红利 ETF——德邦金融产品系列研究之五

【德邦金工|金融产品专题】文旅复苏之路,价值实现的选择,关注旅游ETF——德邦金融产品系列研究之四

【德邦金工|金融产品专题】市场波动渐增,银行防御价值凸显——德邦金融产品系列研究之三

【德邦金工|金融产品专题】智能制造序幕已起,布局智能车赛道,关注智能汽车ETF——德邦金融产品系列研究之二

【德邦金工|金融产品专题】掘金港股核心资产,布局互联网赛道,关注港股通互联网ETF ——德邦金融产品系列研究之一

07  选股月报

【德邦金工|选股月报】策略月度调仓 20230305

【德邦金工|选股月报】策略月度调仓 20230206

【德邦金工|选股月报】策略月度调仓 20230109

【德邦金工|选股月报】策略月度调仓 20221205

【德邦金工|选股月报】策略月度调仓 20221107

【德邦金工|选股月报】策略月度调仓 20221010

【德邦金工|选股月报】策略月度调仓 20220903

【德邦金工|选股月报】策略月度调仓 20220801

【德邦金工|选股月报】策略月度调仓 20220704

【德邦金工|选股月报】策略月度调仓 20220606

【德邦金工|选股月报】策略月度调仓 20220509

【德邦金工|选股月报】策略月度调仓 20220411

【德邦金工|选股月报】策略月度调仓 20220307

【德邦金工|选股月报】策略月度调仓 20220207

08  文献精译

【德邦金工| Fama因子模型专题】Fama三因子模型问世三十周年系列之二:A股市场实证——德邦金工Fama因子模型专题二

【德邦金工|文献精译】Fama-French三因子模型问世三十周年系列之一:重温经典——德邦金工Fama因子模型专题一

【德邦金工|文献精译】股价是否充分反映了业绩中应计和现金流部分所蕴含的未来盈利信息?——德邦金工文献精译系列之七

【德邦金工|文献精译】资产配置:管理风格和绩效衡量——德邦金工文献精译系列之六

【德邦金工|文献精译】规模很重要,如果控制了绩差股——德邦金工文献精译系列之五

【德邦金工|文献精译】中国股市的规模和价值因子模型——德邦金工文献精译系列之四

【德邦金工|文献精译】机器学习驱动下的金融对不确定性的吸收与加剧——德邦文献精译系列之三

【德邦金工|文献精译】不可知的基本面分析是可行的——德邦文献精译系列之二

【德邦金工|文献精译】利用机器学习捕捉因子的非线性效应 —— 德邦金工机器学习专题之一

09  小市值专题

【德邦金工|选股专题】小市值增强策略

【德邦金工|选股专题】小市值策略初探

10  行业轮动专题

【德邦金工|基本面量化专题】基于宏观、中观及行业基本面信息的行业指数择时策略

【德邦金工|行业轮动专题】扩散指数行业轮动多因子改进策略

【德邦金工|基本面量化专题】财务应计异象及其在选股中的应用——德邦金工基本面量化专题第二期

11  分析师专题

【德邦金工|选股专题】基于事件分析框架下的分析师文本情绪挖掘——分析师专题之一


12  基金策略专题

【德邦金工|金融产品专题】基于主动基金持仓的扩散指标行业轮动及改进—基金投资策略系列研究之一

【德邦金工|金融产品专题】基于扩散指标的主动基金筛选策略——德邦金工基金投资策略系列研究之二

【德邦金工|金融产品专题】行业轮动下沪深300增强策略及改进 ——德邦金工基金投资策略系列研究之三




重要说明


适当性说明:《证券期货投资者适当性管理办法》于2017年7月1日起正式实施,通过本微信订阅号/本账号发布的观点和信息仅供德邦证券的专业投资者参考,完整的投资观点应以德邦证券研究所发布的完整报告为准。若您并非德邦证券客户中的专业投资者,为控制投资风险,请取消订阅、接收或使用本订阅号/本账号中的任何信息。本订阅号/本账号难以设置访问权限,若给您造成不便,敬请谅解。市场有风险,投资需谨慎。


分析师承诺:本人具有中国证券业协会授予的证券投资咨询执业资格,以勤勉的职业态度、专业审慎的研究方法,使用合法合规的信息,独立、客观地出具本报告,本报告所采用的数据和信息均来自市场公开信息,本人对这些信息的准确性或完整性不做任何保证,也不保证所包含的信息和建议不会发生任何变更。报告中的信息和意见仅供参考。本人过去不曾与、现在不与、未来也将不会因本报告中的具体推荐意见或观点而直接或间接收任何形式的补偿,分析结论不受任何第三方的授意或影响,特此证明。


免责声明

德邦证券股份有限公司经中国证券监督管理委员会批准,已具备证券投资咨询业务资格。本报告中的信息均来源于合规渠道,德邦证券研究所力求准确、可靠,但对这些信息的准确性及完整性均不做任何保证,据此投资,责任自负。本报告不构成个人投资建议,也没有考虑到个别客户特殊的投资目标、财务状况或需要。客户应考虑本报告中的任何意见或建议是否符合其特定状况。德邦证券及其所属关联机构可能会持有报告中提到的公司所发行的证券并进行交易,还可能为这些公司提供投资银行服务或其他服务。


本报告仅向特定客户传送,未经德邦证券研究所书面授权,本研究报告的任何部分均不得以任何方式制作任何形式的拷贝、复印件或复制品,或再次分发给任何其他人,或以任何侵犯本公司版权的其他方式使用。如欲引用或转载本文内容,务必联络德邦证券研究所并获得许可,并需注明出处为德邦证券研究所,且不得对本文进行有悖原意的引用和删改。如未经本公司授权,私自转载或者转发本报告,所引起的一切后果及法律责任由私自转载或转发者承担。本公司并保留追究其法律责任的权利。


本订阅号不是德邦证券研究报告的发布平台,所载内容均来自于德邦证券已正式发布的研究报告,或对研究报告进行的整理与解读,因此在任何情况下,本订阅号中的信息或所表述的意见并不构成对任何人的投资建议。






本篇文章来源于微信公众号: Zeta金工研究

本文链接:http://17quant.com/post/%E5%A4%A7%E5%AE%B9%E9%87%8F%E5%9B%BD%E8%AF%812000%E5%A2%9E%E5%BC%BA%E7%AD%96%E7%95%A5%E2%80%94%E2%80%94%E5%BE%B7%E9%82%A6%E9%87%91%E5%B7%A5%E5%B0%8F%E5%B8%82%E5%80%BC%E4%B8%93%E9%A2%98%E4%B9%8B%E4%B8%89.html 转载需授权!

分享到:

相关文章

量化专题 | 宏观预期差量化与超预期策略

量化专题 | 宏观预期差量化与超预期策略

文:国盛金融工程团队联系人:林志朋/刘富兵‍  报告导读   如果说专题报告《中国经济领先指数——宏观经济量化系列之一》解决的是宏观量化中的方向判断问题,那么本...

【海通金工】小盘类策略遭遇大幅回撤

【海通金工】小盘类策略遭遇大幅回撤

重要提示:《证券期货投资者适当性管理办法》于2017年7月1日起正式实施,通过本微信订阅号发布的观点和信息仅供海通证券的专业投资者参考,完整的投资观点应以海通证券研究所发布的完整报告为准。若您并非海通...

开源一席谈•量化 会议预告:刘玉强

开源一席谈•量化 会议预告:刘玉强

嘉宾简介:刘玉强,博时基金指数与量化投资部基金经理。8年量化投研经历,3年基金投资运作管理经验,2015年北京大学应用统计硕士毕业后加入博时基金,主要从事指数增强、主动量化的投资和研究。风格特点:注重...

指数增强稍有回暖,周超额收益反弹

指数增强稍有回暖,周超额收益反弹

摘要 中证500增强      中证500增强以中证500为基准指数,精选基本面因子进行组合优化。    &n...

增仓消费金融,沪深300持续高额净流入——基金市场与FOF组合9月报

增仓消费金融,沪深300持续高额净流入——基金市场与FOF组合9月报

重要提示:通过本订阅号发布的观点和信息仅供中信建投证券股份有限公司(下称“中信建投”)客户中符合《证券期货投资者适当性管理办法》规定的机构类专业投资者参考。因本订阅号暂时无法设置访问限制,若您并非中信...

换手率、成长因子表现较好

换手率、成长因子表现较好

摘要 因子IC跟踪IC方面,最近一周,1个月日均换手率、财报超研报预期程度、基于一致预期的标准化预期外盈利等因子表现较好,90天分析师覆盖度、小市值、1个月反转等因子表现较差;最近一月,一年...

发表评论    

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。